Kotlin学习笔记:尾递归优化

2023年 7月 12日 52.9k 0

尾递归

尾递归就是函数在调用完自己之后没有其他操作的递归,是递归的一种特殊形式。举个例子,"计算斐波那契数列第 n 项"的递归算法有哪些?

简单递归实现

斐波那契数列第 0、1 位都是 1,从第二位开始,每项是前两位之和,因此用递归算法很容易就能实现出来了:

funfib1(n: Int): Int {if(n ==0|| n ==1)return1returnfib1(n -1)+fib1(n -2);}

这种写法虽然递归调用是在方法的最后一行,但其实这里还有结果相加的操作,并不符合尾递归的定义。

简单递归虽然容易理解,但实际上,该算法会有冗余计算,比如:fib1(2)会被执行多次,如果 n 越大,这种冗余计算就会越多:

Kotlin学习笔记:尾递归优化

尾递归实现

为了解决上述简单递归实现的弊端,我们可以把已经计算过的结果保存起来,传递给下次计算,所以可以将递归写法进行优化:

funfib2(n: Int): Int {returnfibIter(1,1, n);}funfibIter(a: Int, b: Int, n: Int): Int {if(n ==0){return a
    }else{returnfibIter(b, a + b, n -1)}}

其中,fibIter() 的递归代码在方法的最后一行,调用完也没有其他的操作,符合尾递归的定义。

性能对比

理论归理论,我们还是得用实际代码来测试一下两种递归算法的运行耗时情况,这种才更能直观看出差别,为了方便测试,这里写了一个耗时测试方法:

funtimeConsume(operation:()-> Unit){val begin = System.currentTimeMillis()operation()val end = System.currentTimeMillis()println("begin = ${begin}ms , end = ${end}ms , 耗时 ${end - begin}ms")}

分别将两种递归算法丢到耗时测试方法 timeConsume() 中,得到测试结果:

funmain(args: Array){
    timeConsume {println(fib1(45))}

    timeConsume {println(fib2(45))}}

为了拿到斐波那契数列第 45 个元素值,fib1() 耗时近 6s,而 fib2() 耗时 0ms,这是何等的差距。

注意:测试 fib1(50) 会内存溢出。

尾递归优化(tailrec)

虽然上述尾递归算法的耗时很小,但我们知道,递归算法效率其实并不高,因为每递归一次就要开辟一个方法栈,这是有性能消耗的,还有可能因为递归次数过多导致出现内存溢出的情况,而迭代算法就没有这种问题:

funfib3(n: Int): Int {if(n ==0|| n ==1)return1var a =1var b =1for(i in0 until n){val a_ = b
        val b_ = a + b
        a = a_
        b = b_
    }return a
}

同样的,我们来对尾递归算法和迭代算法进行耗时测试:

funmain(args: Array){
    timeConsume {println(fib2(12000))}

    timeConsume {println(fib3(12000))}}

理论与实际相结合,通过测试结果可以得知,尾递归算法和迭代算法的差距还是有的,如果电脑 CPU 性能较低,或者方法中存在内存操作,这个差距会更大。

注意:因为"计算斐波那契数列第 n 项"这个算法题目仅仅只是数值运行,对于这 2 个算法来说太 easy 了,都是毫秒级别的,所以,需要取较后的元素这样计算量会多一点才能看出差距,同时因为递归过多会出现内存溢出,因此 n 的取值也不能太大,测试 15000 会内存溢出,12000 则不会。

既然递归有这种缺点,那么我们以后就杜绝使用递归算法吧?当然不行,递归也有一个很大的优点,那就是代码逻辑理解容易,既然这样,那有没有办法让递归算法的性能跟迭代算法一样呢?还真有,Kotlin 提供了 tailrec 关键字,可以让 尾递归算法 在编译期自动进行代码优化,从而解决尾递归算法的缺点。我们将 fibIter() 加上 tailrec 关键字:

funfib2(n: Int): Int {returnfibIter(1,1, n);}tailrecfunfibIter(a: Int, b: Int, n: Int): Int {returnif(n ==0) a elsefibIter(b, a + b, n -1)}

再来测试 fib2() 与 fib3() 两个算法的耗时情况:

funmain(args: Array){
    timeConsume {println(fib2(50000))}

    timeConsume {println(fib3(50000))}}

这原本传入 15000 就会出现内存溢出的尾递归算法 fib2(),现在居然能传入 50000 了,耗时也与迭代算法 fib3() 一样,这就是 tailrec 关键字的厉害之处。

注意:tailrec 关键字只能优化尾递归算法,其它递归算法无法优化。

相关文章

JavaScript2024新功能:Object.groupBy、正则表达式v标志
PHP trim 函数对多字节字符的使用和限制
新函数 json_validate() 、randomizer 类扩展…20 个PHP 8.3 新特性全面解析
使用HTMX为WordPress增效:如何在不使用复杂框架的情况下增强平台功能
为React 19做准备:WordPress 6.6用户指南
如何删除WordPress中的所有评论

发布评论