我们知道,在使用promentheus的过程中,默认的数据量一旦到一个量级后,查询区间的数据会非常缓慢,甚至一个查询就可能导致promentheus的崩溃,尽管我们不需要存储多久的数据,但是集群pod在一定的数量后,短期的数据仍然非常多,对于Promentheus本身的存储引擎来讲,仍是一个不小的问题,而使用外部存储就显得很有必要。早期流行的influxDB,由于社区对Promentheus并不友好,因此早些就放弃。
此前,尝试了Prometheus远程存储Promscale和TimescaleDB测试,而后在讨论中发现VictoriaMetrics是更可取的方式。而VictoriaMetrics也有自己的一套系统监控。
而在官方的介绍中,VictoriaMetrics强烈diss了TimescaleDB
- It provides high data compression, so up to 70x more data points may be crammed into limited storage comparing to TimescaleDB and up to 7x less storage space is required compared to Prometheus, Thanos or Cortex.
VictoriaMetrics可用于 Prometheus 监控数据做长期远程存储的时序数据库之一,而在github上是这样介绍的,截取部分如下
- 可以直接用于 Grafana 作为 Prometheus 数据源使用
- 指标数据摄取和查询具备高性能和良好的可扩展性,性能比 InfluxDB 和 TimescaleDB 高出 20 倍
- 内存方面也做了优化,比 InfluxDB 少 10x 倍,比 Prometheus、Thanos 或 Cortex 少 7 倍
其他有能够理解的部分话术
- 针对具有高延迟 IO 和低 IOPS 的存储进行了优化
- 提供全局的查询视图,多个 Prometheus 实例或任何其他数据源可能会将数据摄取到 VictoriaMetrics
- VictoriaMetrics 由一个没有外部依赖的小型可执行文件组成
- 所有的配置都是通过明确的命令行标志和合理的默认值完成的
- 所有数据都存储在 - storageDataPath 命令行参数指向的目录中
- 可以使用
vmbackup/vmrestore
工具轻松快速地从实时快照备份到 S3 或 GCS 对象存储中 - 支持从第三方时序数据库获取数据源
- 由于存储架构原因,它可以保护存储在非正常关机(即 OOM、硬件重置或 kill -9)时免受数据损坏
- 同样支持指标的 relabel 操作
注意
VictoriaMetrics 不支持prometheus本身读取,但是为了解决报警的问题,开发人员建议配置--storage.tsdb.retention.time=24h
保留24小时的数据在prometheus中,而其他的数据写入到远程VictoriaMetrics ,通过grafana展示。
VictoriaMetrics wiki说不支持prometheus读取,因为它发送的数据量很大; remote_read api 可以解决警报问题。我们可以启动一个 prometheus 实例,它只有 remote_read 配置部分和规则部分。victoriaMetrics 警报非常好!
由于Prometheus中的这个问题,Prometheus 远程读取 API 不是为读取由其他 Prometheus 实例写入远程存储的数据而设计的。
至于 Prometheus 中的警报,则将 Prometheus 本地存储保留设置为涵盖所有已配置警报规则的持续时间。通常 24 小时就足够了:
--storage.tsdb.retention.time=24h
. 在这种情况下,Prometheus 将对本地存储的数据执行警报规则,同时remote_write
像往常一样将所有数据复制到配置的 url。而这些在github的wiki中以及为什么 VictoriaMetrics 不支持Prometheus 远程读取 API?有过说明
远程读取 API 需要在给定时间范围内传输所有请求指标的所有原始数据。例如,如果一个查询包含 1000 个指标,每个指标有 10K 个值,那么远程读取 API 必须
1000*10K
向 Prometheus 返回 =10M 个指标值。这是缓慢且昂贵的。Prometheus 的远程读取 API 不适用于查询外部数据——也就是global query view
. 有关详细信息,请参阅此问题。因此,只需通过vmui、Prometheus Querying API 或Grafana 中的 Prometheus 数据源直接查询 VictoriaMetrics 。
VictoriaMetrics
在VictoriaMetrics 中介绍如下
VictoriaMetrics uses their modified version of LSM tree (Logging Structure Merge Tree). All the tables and indexes on the disk are immutable once created. When it's making the snapshot, they just create the hard link to the immutable files.
VictoriaMetrics stores the data in MergeTree, which is from ClickHouse and similar to LSM. The MergeTree has particular design decision compared to canonical LSM.
MergeTree is column-oriented. Each column is stored separately. And the data is sorted by the "primary key", and the "primary key" doesn't have to be unique. It speeds up the look-up through the "primary key", and gets the better compression ratio. The "parts" is similar to SSTable in LSM; it can be merged into bigger parts. But it doesn't have strict levels.
The Inverted Index is built on "mergeset" (A data structure built on top of MergeTree ideas). It's used for fast lookup by given the time-series selector.
提到的技术点, LSM 树,以及MergeTree
VictoriaMetrics 将数据存储在 MergeTree 中,MergeTree 来自 ClickHouse,类似于 LSM。与规范 LSM 相比,MergeTree 具有特定的设计决策。
MergeTree 是面向列的。每列单独存储。并且数据按“主键”排序,“主键”不必是唯一的。它通过“主键”加快查找速度,获得更好的压缩比。“部分”类似于 LSM 中的 SSTable;它可以合并成更大的部分。但它没有严格的等级。
倒排索引建立在“mergeset”(建立在 MergeTree 思想之上的数据结构)之上。通过给定时间序列选择器,它用于快速查找。
为了能够有更多的理解,可以参考LSM Tree原理详解):https://www.jianshu.com/p/b43b856e09bb
应用到kube-prometheus
对照如下kubernetes版本安装对应的kube-prometheus版本
kube-prometheus stack | Kubernetes 1.19 | Kubernetes 1.20 | Kubernetes 1.21 | Kubernetes 1.22 | Kubernetes 1.23 |
---|---|---|---|---|---|
release-0.7 |
✔ | ✔ | ✗ | ✗ | ✗ |
release-0.8 |
✗ | ✔ | ✔ | ✗ | ✗ |
release-0.9 |
✗ | ✗ | ✔ | ✔ | ✗ |
release-0.10 |
✗ | ✗ | ✗ | ✔ | ✔ |
main |
✗ | ✗ | ✗ | ✔ | ✔ |
Quickstart
找到符合集群对应的版本进行安装,如果你是ack,需要卸载ack-arms-prometheus
替换镜像
k8s.gcr.io/prometheus-adapter/prometheus-adapter:v0.9.1
v5cn/prometheus-adapter:v0.9.1
k8s.gcr.io/kube-state-metrics/kube-state-metrics:v2.4.2
bitnami/kube-state-metrics:2.4.2
quay.io/brancz/kube-rbac-proxy:v0.12.0
bitnami/kube-rbac-proxy:0.12.0
开始部署
$ cd kube-prometheus
$ git checkout main
kubectl.exe create -f .manifestssetup
kubectl.exe create -f .manifests
配置ingress-nginx
> kubectl.exe -n monitoring get svc
NAME TYPE CLUSTER-IP PORT(S)
alertmanager-main ClusterIP 192.168.31.49 9093/TCP,8080/TCP
alertmanager-operated ClusterIP None 9093/TCP,9094/TCP,9094/UDP
blackbox-exporter ClusterIP 192.168.31.69 9115/TCP,19115/TCP
grafana ClusterIP 192.168.130.3 3000/TCP
kube-state-metrics ClusterIP None 8443/TCP,9443/TCP
node-exporter ClusterIP None 9100/TCP
prometheus-adapter ClusterIP 192.168.13.123 443/TCP
prometheus-k8s ClusterIP 192.168.118.39 9090/TCP,8080/TCP
prometheus-operated ClusterIP None 9090/TCP
prometheus-operator ClusterIP None 8443/TCP
ingress-nginx
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: monitoring-ui
namespace: monitoring
spec:
ingressClassName: nginx
rules:
- host: local.grafana.com
http:
paths:
- path: /
pathType: Prefix
backend:
service:
name: grafana
port:
number: 3000
---
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: prometheus-ui
namespace: monitoring
spec:
ingressClassName: nginx
rules:
- host: local.prom.com
http:
paths:
- path: /
pathType: Prefix
backend:
service:
name: prometheus-k8s
port:
number: 9090
配置nfs测试
apiVersion: apps/v1 kind: Deployment metadata: name: nfs-client-provisioner labels: app: nfs-client-provisioner # replace with namespace where provisioner is deployed namespace: default spec: replicas: 1 strategy: type: Recreate selector: matchLabels: app: nfs-client-provisioner template: metadata: labels: app: nfs-client-provisioner spec: serviceAccountName: nfs-client-provisioner containers: - name: nfs-client-provisioner image: quay.io/external_storage/nfs-client-provisioner:latest imagePullPolicy: IfNotPresent volumeMounts: - name: nfs-client-root mountPath: /persistentvolumes env: - name: PROVISIONER_NAME value: fuseim.pri/ifs - name: NFS_SERVER value: 192.168.3.19 - name: NFS_PATH value: /data/nfs-k8s volumes: - name: nfs-client-root nfs: server: 192.168.3.19 path: /data/nfs-k8s --- apiVersion: v1 kind: ServiceAccount metadata: name: nfs-client-provisioner # replace with namespace where provisioner is deployed namespace: default --- kind: ClusterRole apiVersion: rbac.authorization.k8s.io/v1 metadata: name: nfs-client-provisioner-runner rules: - apiGroups: [""] resources: ["persistentvolumes"] verbs: ["get", "list", "watch", "create", "delete"] - apiGroups: [""] resources: ["persistentvolumeclaims"] verbs: ["get", "list", "watch", "update"] - apiGroups: ["storage.k8s.io"] resources: ["storageclasses"] verbs: ["get", "list", "watch"] - apiGroups: [""] resources: ["events"] verbs: ["create", "update", "patch"] --- kind: ClusterRoleBinding apiVersion: rbac.authorization.k8s.io/v1 metadata: name: run-nfs-client-provisioner subjects: - kind: ServiceAccount name: nfs-client-provisioner # replace with namespace where provisioner is deployed namespace: default roleRef: kind: ClusterRole name: nfs-client-provisioner-runner apiGroup: rbac.authorization.k8s.io --- kind: Role apiVersion: rbac.authorization.k8s.io/v1 metadata: name: leader-locking-nfs-client-provisioner # replace with namespace where provisioner is deployed namespace: default rules: - apiGroups: [""] resources: ["endpoints"] verbs: ["get", "list", "watch", "create", "update", "patch"] --- kind: RoleBinding apiVersion: rbac.authorization.k8s.io/v1 metadata: name: leader-locking-nfs-client-provisioner # replace with namespace where provisioner is deployed namespace: default subjects: - kind: ServiceAccount name: nfs-client-provisioner # replace with namespace where provisioner is deployed namespace: default roleRef: kind: Role name: leader-locking-nfs-client-provisioner apiGroup: rbac.authorization.k8s.io
vm配置
创建一个pvc-victoriametrics
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
name: nfs-storage
namespace: default
provisioner: fuseim.pri/ifs # or choose another name, must match deployment's env PROVISIONER_NAME'
parameters:
archiveOnDelete: "false"
# Supported policies: Delete、 Retain , default is Delete
reclaimPolicy: Retain
---
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
name: pvc-victoriametrics
namespace: monitoring
spec:
accessModes:
- ReadWriteMany
storageClassName: nfs-storage
resources:
requests:
storage: 10Gi
准备pvc
[linuxea.com ~/victoriametrics]# kubectl apply -f pvc.yaml
storageclass.storage.k8s.io/nfs-storage created
persistentvolumeclaim/pvc-victoriametrics created
[linuxea.com ~/victoriametrics]# kubectl get pv
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM
...
pvc-97bea5fe-0131-4fb5-aaa9-66eee0802cb4 10Gi RWX Retain Bound monitoring/pvc-victoriametrics
...
[linuxea.com ~/victoriametrics]# kubectl get pvc -A
NAMESPACE NAME STATUS VOLUME CAPACITY
...
monitoring pvc-victoriametrics Bound pvc-97bea5fe-0131-4fb5-aaa9-66eee0802cb4 10Gi
创建victoriametrics,并配置上面的pvc
1w : 一周
# vm-grafana.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: victoria-metrics
namespace: monitoring
spec:
selector:
matchLabels:
app: victoria-metrics
template:
metadata:
labels:
app: victoria-metrics
spec:
containers:
- name: vm
image: victoriametrics/victoria-metrics:v1.76.1
imagePullPolicy: IfNotPresent
args:
- -storageDataPath=/var/lib/victoria-metrics-data
- -retentionPeriod=1w
ports:
- containerPort: 8428
name: http
resources:
limits:
cpu: "1"
memory: 2048Mi
requests:
cpu: 100m
memory: 512Mi
readinessProbe:
httpGet:
path: /health
port: 8428
initialDelaySeconds: 30
timeoutSeconds: 30
livenessProbe:
httpGet:
path: /health
port: 8428
initialDelaySeconds: 120
timeoutSeconds: 30
volumeMounts:
- mountPath: /var/lib/victoria-metrics-data
name: victoriametrics-storage
volumes:
- name: victoriametrics-storage
persistentVolumeClaim:
claimName: nas-csi-pvc-oms-fat-victoriametrics
---
apiVersion: v1
kind: Service
metadata:
name: victoria-metrics
namespace: monitoring
spec:
ports:
- name: http
port: 8428
protocol: TCP
targetPort: 8428
selector:
app: victoria-metrics
type: ClusterIP
apply
[linuxea.com ~/victoriametrics]# kubectl apply -f vmctoriametrics.yaml
deployment.apps/victoria-metrics created
service/victoria-metrics created
[linuxea.com ~/victoriametrics]# kubectl -n monitoring get pod
NAME READY STATUS RESTARTS AGE
alertmanager-main-0 2/2 Running 88 268d
blackbox-exporter-55c457d5fb-6rc8m 3/3 Running 114 260d
grafana-756dc9b545-b2skg 1/1 Running 38 260d
kube-state-metrics-76f6cb7996-j2hx4 3/3 Running 153 260d
node-exporter-4hxzp 2/2 Running 120 316d
node-exporter-54t9p 2/2 Running 124 316d
node-exporter-8rfht 2/2 Running 120 316d
node-exporter-hqzzn 2/2 Running 126 316d
prometheus-adapter-59df95d9f5-7shw5 1/1 Running 78 260d
prometheus-k8s-0 2/2 Running 89 268d
prometheus-operator-7775c66ccf-x2wv4 2/2 Running 115 260d
promoter-66f6dd475c-fdzrx 1/1 Running 3 8d
victoria-metrics-56d47f6fb-qmthh 0/1 Running 0 15s
[linuxea.com ~/victoriametrics]# kubectl -n monitoring get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
alertmanager-main NodePort 10.68.30.147 <none> 9093:30092/TCP 316d
alertmanager-operated ClusterIP None <none> 9093/TCP,9094/TCP,9094/UDP 316d
blackbox-exporter ClusterIP 10.68.25.245 <none> 9115/TCP,19115/TCP 316d
etcd-k8s ClusterIP None <none> 2379/TCP 316d
external-node-k8s ClusterIP None <none> 9100/TCP 315d
external-pve-k8s ClusterIP None <none> 9221/TCP 305d
external-windows-node-k8s ClusterIP None <none> 9182/TCP 316d
grafana NodePort 10.68.133.224 <none> 3000:30091/TCP 316d
kube-state-metrics ClusterIP None <none> 8443/TCP,9443/TCP 316d
node-exporter ClusterIP None <none> 9100/TCP 316d
prometheus-adapter ClusterIP 10.68.138.175 <none> 443/TCP 316d
prometheus-k8s NodePort 10.68.207.185 <none> 9090:30090/TCP 316d
prometheus-operated ClusterIP None <none> 9090/TCP 316d
prometheus-operator ClusterIP None <none> 8443/TCP 316d
promoter ClusterIP 10.68.26.69 <none> 8080/TCP 11d
victoria-metrics ClusterIP 10.68.225.139 <none> 8428/TCP 18s
修改prometheus的远程存储配置,我们主要修改如下,其他参数可在官方文档查看
首先修改远程写如到vm
remoteWrite:
- url: "http://victoria-metrics:8428/api/v1/write"
queueConfig:
capacity: 5000
remoteTimeout: 30s
并且prometheus的存储时间为1天
retention: 1d
一天的本地存储只是为了应对告警,而远程写入到vm后通过grafana来看
Prometheus-prometheus.yaml
apiVersion: monitoring.coreos.com/v1
kind: Prometheus
metadata:
labels:
app.kubernetes.io/component: prometheus
app.kubernetes.io/instance: k8s
app.kubernetes.io/name: prometheus
app.kubernetes.io/part-of: kube-prometheus
app.kubernetes.io/version: 2.35.0
name: k8s
namespace: monitoring
spec:
retention: 1d
alerting:
alertmanagers:
- apiVersion: v2
name: alertmanager-main
namespace: monitoring
port: web
enableFeatures: []
externalLabels: {}
image: quay.io/prometheus/prometheus:v2.35.0
nodeSelector:
kubernetes.io/os: linux
podMetadata:
labels:
app.kubernetes.io/component: prometheus
app.kubernetes.io/instance: k8s
app.kubernetes.io/name: prometheus
app.kubernetes.io/part-of: kube-prometheus
app.kubernetes.io/version: 2.35.0
podMonitorNamespaceSelector: {}
podMonitorSelector: {}
probeNamespaceSelector: {}
probeSelector: {}
replicas: 1
resources:
requests:
memory: 400Mi
remoteWrite:
- url: "http://victoria-metrics:8428/api/v1/write"
queueConfig:
capacity: 5000
remoteTimeout: 30s
ruleNamespaceSelector: {}
ruleSelector: {}
securityContext:
fsGroup: 2000
runAsNonRoot: true
runAsUser: 1000
serviceAccountName: prometheus-k8s
serviceMonitorNamespaceSelector: {}
serviceMonitorSelector: {}
version: 2.35.0
而此时的配置不出意外会被应用到URL/config
remote_write:
- url: http://victoria-metrics:8428/api/v1/write
remote_timeout: 5m
follow_redirects: true
queue_config:
capacity: 5000
max_shards: 200
min_shards: 1
max_samples_per_send: 500
batch_send_deadline: 5s
min_backoff: 30ms
max_backoff: 100ms
metadata_config:
send: true
send_interval: 1m
查看日志
level=info ts=2022-04-28T15:26:12.047Z caller=main.go:944 msg="Loading configuration file" filename=/etc/prometheus/config_out/prometheus.env.yaml
ts=2022-04-28T15:26:12.053Z caller=dedupe.go:112 component=remote level=info remote_name=1a1964 url=http://victoria-metrics:8428/api/v1/write msg="Starting WAL watcher" queue=1a1964
ts=2022-04-28T15:26:12.053Z caller=dedupe.go:112 component=remote level=info remote_name=1a1964 url=http://victoria-metrics:8428/api/v1/write msg="Starting scraped metadata watcher"
ts=2022-04-28T15:26:12.053Z caller=dedupe.go:112 component=remote level=info remote_name=1a1964 url=http://victoria-metrics:8428/api/v1/write msg="Replaying WAL" queue=1a1964
....
totalDuration=55.219178ms remote_storage=85.51µs web_handler=440ns query_engine=719ns scrape=45.6µs scrape_sd=1.210328ms notify=4.99µs notify_sd=352.209µs rules=47.503195ms
回到nfs查看
[root@Node-172_16_100_49 /data/nfs-k8s/monitoring-pvc-victoriametrics-pvc-97bea5fe-0131-4fb5-aaa9-66eee0802cb4]# ll
total 0
drwxr-xr-x 4 root root 48 Apr 28 22:37 data
-rw-r--r-- 1 root root 0 Apr 28 22:37 flock.lock
drwxr-xr-x 5 root root 71 Apr 28 22:37 indexdb
drwxr-xr-x 2 root root 43 Apr 28 22:37 metadata
drwxr-xr-x 2 root root 6 Apr 28 22:37 snapshots
drwxr-xr-x 3 root root 27 Apr 28 22:37 tmp
修改grafana的配置
此时看到的数据是用promenteus中获取到的,修改grefana来从vm读取数据
datasources.yaml: |-
{
"apiVersion": 1,
"datasources": [
{
"access": "proxy",
"editable": false,
"name": "prometheus",
"orgId": 1,
"type": "prometheus",
"url": "http://victoria-metrics:8428",
"version": 1
}
]
}
顺便修改时区
stringData:
# 修改 时区
grafana.ini: |
[date_formats]
default_timezone = CST
如下
apiVersion: v1
kind: Secret
metadata:
labels:
app.kubernetes.io/component: grafana
app.kubernetes.io/name: grafana
app.kubernetes.io/part-of: kube-prometheus
app.kubernetes.io/version: 8.5.0
name: grafana-datasources
namespace: monitoring
stringData:
# 修改链接的地址
datasources.yaml: |-
{
"apiVersion": 1,
"datasources": [
{
"access": "proxy",
"editable": false,
"name": "prometheus",
"orgId": 1,
"type": "prometheus",
"url": "http://victoria-metrics:8428",
"version": 1
}
]
}
type: Opaque
---
apiVersion: v1
kind: Secret
metadata:
labels:
app.kubernetes.io/component: grafana
app.kubernetes.io/name: grafana
app.kubernetes.io/part-of: kube-prometheus
app.kubernetes.io/version: 8.5.0
name: grafana-config
namespace: monitoring
stringData:
# 修改 时区
grafana.ini: |
[date_formats]
default_timezone = CST
type: Opaque
# grafana:
# sidecar:
# datasources:
# enabled: true
# label: grafana_datasource
# searchNamespace: ALL
# defaultDatasourceEnabled: false
# additionalDataSources:
# - name: Loki
# type: loki
# url: http://loki-stack.loki-stack:3100/
# access: proxy
# - name: VictoriaMetrics
# type: prometheus
# url: http://victoria-metrics-single-server.victoria-metrics-single:8428
# access: proxy
而此时的datasources就变成了vm,远程写入到了vm,grafana读取的是vm,而Prometheus还是读的是prometheus
监控vm
dashboards与版本有关,https://github.com/VictoriaMetrics/VictoriaMetrics/tree/master/dashboards
并且添加监控
# victoriametrics-metrics
apiVersion: v1
kind: Service
metadata:
name: victoriametrics-metrics
namespace: monitoring
labels:
app: victoriametrics-metrics
annotations:
prometheus.io/port: "8428"
prometheus.io/scrape: "true"
spec:
type: ClusterIP
ports:
- name: metrics
port: 8428
targetPort: 8428
protocol: TCP
selector:
# 对应victoriametrics的service
app: victoria-metrics
---
apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
name: victoriametrics-metrics
namespace: monitoring
spec:
endpoints:
- interval: 15s
port: metrics
path: /metrics
namespaceSelector:
matchNames:
- monitoring
selector:
matchLabels:
app: victoriametrics-metrics
参考
Prometheus远程存储Promscale和TimescaleDB测试victoriametricsLSM Tree原理详解