GoLang GPM模型

2023年 7月 19日 26.6k 0

前言

Goroutine & Scheduler

goroutine 是什么?通常 goroutine 会被当做 coroutine(协程)的 golang 实现,但实际上,goroutine 并非传统意义上的协程,现在主流的线程模型分三种:内核级线程模型、用户级线程模型和两级线程模型(也称混合型线程模型),传统的协程库属于用户级线程模型,而 goroutine 和它的 Go Scheduler 在底层实现上其实是属于两级线程模型。

线程模型

优/缺点 内核级 用户级 混合型
优点 简单,真正并行 创建成本低 all
缺点 成本高 并发性能不完全

内核级线程模型

用户线程与内核线程 KSE 是一对一(1 : 1)的映射模型,也就是每一个用户线程绑定一个实际的内核线程,而线程的调度则完全交付给操作系统内核去做,应用程序对线程的创建、终止以及同步都基于内核提供的系统调用来完成,大部分编程语言的线程库(比如 Java 的 java.lang.Thread、C++11 的 std::thread 等等)都是对操作系统的线程(内核级线程)的一层封装,创建出来的每个线程与一个独立的 KSE 静态绑定,因此其调度完全由操作系统内核调度器去做,也就是说,一个进程里创建出来的多个线程每一个都绑定一个 KSE。

用户级线程模型

用户线程与内核线程 KSE 是多对一(N : 1)的映射模型,多个用户线程的一般从属于单个进程并且多线程的调度是由用户自己的线程库来完成,线程的创建、销毁以及多线程之间的协调等操作都是由用户自己的线程库来负责而无须借助系统调用来实现。一个进程中所有创建的线程都只和同一个 KSE 在运行时动态绑定,也就是说,操作系统只知道用户进程而对其中的线程是无感知的,内核的所有调度都是基于用户进程。这种实现方式相比内核级线程可以做的很轻量级,对系统资源的消耗会小很多,因此可以创建的线程数量与上下文切换所花费的代价也会小得多。但该模型有个原罪:并不能做到真正意义上的并发,假设在某个用户进程上的某个用户线程因为一个阻塞调用(比如 I/O 阻塞)而被 CPU 给中断(抢占式调度)了,那么该进程内的所有线程都被阻塞(因为单个用户进程内的线程自调度是没有 CPU 时钟中断的,从而没有轮转调度),整个进程被挂起。即便是多 CPU 的机器,也无济于事,因为在用户级线程模型下,一个 CPU 关联运行的是整个用户进程,进程内的子线程绑定到 CPU 执行是由用户进程调度的,内部线程对 CPU 是不可见的,此时可以理解为 CPU 的调度单位是用户进程。所以很多的协程库会把自己一些阻塞的操作重新封装为完全的非阻塞形式,然后在以前要阻塞的点上,主动让出自己,并通过某种方式通知或唤醒其他待执行的用户线程在该 KSE 上运行,从而避免了内核调度器由于 KSE 阻塞而做上下文切换,这样整个进程也不会被阻塞了。

两级线程模型

用户线程与内核 KSE 是多对多(N : M)的映射模型:首先,区别于用户级线程模型,两级线程模型中的一个进程可以与多个内核线程 KSE 关联,也就是说一个进程内的多个线程可以分别绑定一个自己的 KSE,这点和内核级线程模型相似;其次,又区别于内核级线程模型,它的进程里的线程并不与 KSE 唯一绑定,而是可以多个用户线程映射到同一个 KSE,当某个 KSE 因为其绑定的线程的阻塞操作被内核调度出 CPU 时,其关联的进程中其余用户线程可以重新与其他 KSE 绑定运行。即用户调度器实现用户线程到 KSE 的『调度』,内核调度器实现 KSE 到 CPU 上的『调度』。

G-P-M 模型概述

在 Go 语言中,每一个 goroutine 是一个独立的执行单元,相较于每个 OS 线程固定分配 2M 内存的模式,goroutine 的栈采取了动态扩容方式, 初始时仅为2KB,随着任务执行按需增长,最大可达 1GB(64 位机器最大是 1G,32 位机器最大是 256M),且完全由 golang 自己的调度器 Go Scheduler 来调度。此外,GC 还会周期性地将不再使用的内存回收,收缩栈空间。 因此,Go 程序可以同时并发成千上万个 goroutine 是得益于它强劲的调度器和高效的内存模型。

调度算法

GPM

  • G: 表示 Goroutine,每个 Goroutine 对应一个 G 结构体,G 存储 Goroutine 的运行堆栈、状态以及任务函数,可重用。G 并非执行体,每个 G 需要绑定到 P 才能被调度执行。

  • P: Processor,表示逻辑处理器, 对 G 来说,P 相当于 CPU 核,G 只有绑定到 P(在 P 的 local runq 中)才能被调度。对 M 来说,P 提供了相关的执行环境(Context),如内存分配状态(mcache),任务队列(G)等,P 的数量决定了系统内最大可并行的 G 的数量(前提:物理 CPU 核数 >= P 的数量),P 的数量由用户设置的 GOMAXPROCS 决定,但是不论 GOMAXPROCS 设置为多大,P 的数量最大为 256。

  • M: Machine,OS 线程抽象,代表着真正执行计算的资源,在绑定有效的 P 后,进入 schedule 循环;而 schedule 循环的机制大致是从 Global 队列、P 的 Local 队列以及 wait 队列中获取 G,切换到 G 的执行栈上并执行 G 的函数,调用 goexit 做清理工作并回到 M,如此反复。M 并不保留 G 状态,这是 G 可以跨 M 调度的基础,M 的数量是不定的,由 Go Runtime 调整,为了防止创建过多 OS 线程导致系统调度不过来,目前默认最大限制为 10000 个。

  • 每个 P 维护一个 G 的本地队列;

  • 当一个 G 被创建出来,或者变为可执行状态时,就把他放到 P 的本地可执行队列中,如果满了则放入Global;

  • 当一个 G 在 M 里执行结束后,P 会从队列中把该 G 取出;如果此时 P 的队列为空,即没有其他 G 可以执行, M 就随机选择另外一个 P,从其可执行的 G 队列中取走一半。

调度过程

当通过 go 关键字创建一个新的 goroutine 的时候,它会优先被放入 P 的本地队列。为了运行 goroutine,M 需要持有(绑定)一个 P,接着 M 会启动一个 OS 线程,循环从 P 的本地队列里取出一个 goroutine 并执行。执行调度算法:当 M 执行完了当前 P 的 Local 队列里的所有 G 后,P 也不会就这么在那划水啥都不干,它会先尝试从 Global 队列寻找 G 来执行,如果 Global 队列为空,它会随机挑选另外一个 P,从它的队列里中拿走一半的 G 到自己的队列中执行。

阻塞

Go runtime 会在下面的 goroutine 被阻塞的情况下运行另外一个 goroutine:

  • blocking syscall (for example opening a file)
  • network input
  • channel operations
  • primitives in the sync package

这四种场景又可归类为两种类型:

用户态阻塞/唤醒

当 goroutine 因为 channel 操作阻塞时,对应的 G 会被放置到某个 wait 队列(如 channel 的 waitq),该 G 的状态由_Gruning 变为 _Gwaitting ,而 M 会跳过该 G 尝试获取并执行下一个 G,如果此时没有 runnable 的 G 供 M 运行,那么 M 将解绑 P,并进入 sleep 状态;当阻塞的 G 被另一端的 G2 唤醒时(比如 channel 的可读/写通知),G 被标记为 runnable,尝试加入 G2 所在 P 的 runnext,然后再是 P 的 Local 队列和 Global 队列。

系统调用阻塞

当 G 被阻塞在某个系统调用上时,此时 G 会阻塞在 _Gsyscall 状态,M 也处于 block on syscall 状态,此时的 M 可被抢占调度:执行该 G 的 M 会与 P 解绑,而 P 则尝试与其它空闲的 M 绑定,继续执行其它 G。如果没有其它空闲的 M,但 P 的 Local 队列中仍然有 G 需要执行,则创建一个新的 M;当系统调用完成后,G 会重新尝试获取一个空闲的 P 进入它的 Local 队列恢复执行,如果没有空闲的 P,G 会被标记为 runnable 加入到 Global 队列。

参考&致谢

  • Go 并发编程实战(第 2 版)
  • Go 语言学习笔记
  • go-coding-in-go-way
  • Goroutine 并发调度模型深度解析
  • 也谈 goroutine 调度器
  • The Go scheduler

相关文章

JavaScript2024新功能:Object.groupBy、正则表达式v标志
PHP trim 函数对多字节字符的使用和限制
新函数 json_validate() 、randomizer 类扩展…20 个PHP 8.3 新特性全面解析
使用HTMX为WordPress增效:如何在不使用复杂框架的情况下增强平台功能
为React 19做准备:WordPress 6.6用户指南
如何删除WordPress中的所有评论

发布评论