Python装饰器
纸上得来终觉浅,绝知此事要躬行。
1. 装饰器的基础知识
在Java语言中装饰器是一种设计模式,而Python则原生就支持这样使用方式。
装饰器的引入
- 面向切面的编程范式就是在运行时,动态地将代码切入到类的指定方法、指定位置上的编程思想就是面向切面的编程,更通俗一点就是通过在现有代码中添加额外行为而不修改代码本身。
- 装饰器就是通过这样的面向切面的编程的思路进行设计的,不改变现有代码的前提下,对其功能、内容进行扩展和补充。
def use_logging(func): def wrapper(): logging.warn("%s is running" % func.__name__) return func() return wrapper
装饰器的好处
- 降低模块的耦合度
- 使系统容易扩展
- 更好的代码复用性
装饰器的多继承
- 一个函数或者类拥有多个装饰器,他们的执行顺序从上到下依次包裹
# 一个函数还可以同时定义多个装饰器 @a @b @c def f (): pass
# 执行顺序是从里到外,最先调用最里层的装饰器,最后调用最外层的装饰器 f = a(b(c(f)))
使用 wraps 方法
- 官方文档内容
help(wraps) wraps(wrapped, assigned=('__module__', '__name__', '__qualname__', '__doc__', '__annotations__'), updated=('__dict__',)) Decorator factory to apply update_wrapper() to a wrapper function Returns a decorator that invokes update_wrapper() with the decorated function as the wrapper argument and the arguments to wraps() as the remaining arguments. Default arguments are as for update_wrapper(). This is a convenience function to simplify applying partial() to update_wrapper().
参考链接地址
2. 装饰器的使用技巧
2.1 函数装饰器
用函数实现的装饰器,不带参数的装饰器一层嵌套,带参数的装饰器二次嵌套。
不使用装饰器写法
- 不带参数的装饰器 k 就是再其外层进行一层封装嵌套,这里只不过没有使用@装饰器的语法糖而已。
from datetime import datetime def time_info(fn): def wrapper(*args): print(datetime.now()) res = fn(*args) return res return wrapper def warn_log(messages): print('[Warn]: {0}'.format(messages))
In [1]: from func import warn_log, time_info In [2]: warn = time_info(warn_log) In [3]: warn('start write log info...') 2018-07-06 15:23:35.988196 [Warn]: start write log info...
不带参数的装饰器
- @符号是装饰器的语法糖,语法糖指计算机语言中添加的某种语法,这种语法对语言的功能没有影响,但是更方便程序员使用。语法糖让程序更加简洁,有更高的可读性。
from functions import wraps from datetime import datetime def time_info(fn): @wraps(fn) def wrapper(*args): print(datetime.now()) res = fn(*args) return res return wrapper @time_info def warn_log(messages): print('[Warn]: {0}'.format(messages))
In [1]: from func import warn_log # 类似于warn = time_info(warn_log)的使用方式 In [2]: warn = warn_log('start write log info...') 2018-07-06 15:27:59.234672 [Warn]: start write log info...
带参数的装饰器
- 带参数的装饰器写法就是再其外层进行两层封装嵌套,最外层为接收自生传递进来的函数,而第二层就是接收需要装饰的函数了。
from functions import wraps def check_users(*args): allow_users = list(args) def wrapper(fn): @wraps(fn) def _(*args): print('Check user with input...') if list(args)[0] in allow_users: print('Pass to get password.') res = fn(*args) return res else: raise ValueError('Input check user is not allow.') return _ return wrapper @check_users('escape', 'misssun') def get_password(*args): print('Password is 123456.')
In [1]: from func import get_password In [2]: get_password('escape') Check user with input... Pass to get password. Password is 123456. In [3]: get_password('newuser') Check user with input... ---------------------------------------------------------- ValueError Traceback (most recent call last) <ipython-input-25-f144bb0f76f6> in <module>() ----> 1 get_password('newuser') ~/Escape/MorePractise/func.py in _(*args) 10 return res 11 else: ---> 12 raise ValueError('Input check user is not allow.') 13 return _ 14 return wrapper ValueError: Input check user is not allow.
functools.wraps
- 用于保持调用时属性一致的情况
In [1]: def warn_log(): ...: '''warn_log doc''' ...: print('[Warn]: messages') ...: return 1 ...: In [2]: warn_log.__name__ Out[2]: 'warn_log' In [3]: warn_log.__module__ Out[3]: '__main__' In [4]: warn_log.__doc__ Out[4]: 'warn_log doc' In [5]: warn = time_info(warn_log) In [6]: warn.__name__ Out[6]: 'wrapper' In [7]: warn.__module__ Out[7]: '__main__' In [8]: warn.__doc__
In [1]: def warn_log(): ...: '''warn_log doc''' ...: print('[Warn]: messages') ...: return 1 ...: In [2]: def time_info(fn): ...: @wraps(fn) ...: def wrapper(): ...: res = fn() ...: print(datetime.now()) ...: return res ...: return wrapper ...: In [3]: warn = time_info(warn_log) In [4]: warn.__name__ Out[4]: 'warn' In [5]: warn.__doc__ Out[5]: 'warn_log doc'
2.2 类装饰器
用类实现的装饰器,主要是因为__call__的重载。
给函数的类装饰器
- 有两种表示方式,还分带参数和不带参数
# 不带参数的类装饰器 In [1]: class Common: ...: def __init__(self, func): ...: self.func = func ...: def __call__(self, *args, **kwargs): ...: print(f'args: {args}') ...: return self.func(*args, **kwargs) ...: In [2]: @Common ...: def test(num): ...: print(f'Number: {num}') ...: # 等价于Common(test)(10)格式 In [3]: test(10) args: (10,) Number: 10
# 这个是实现同样功能的函数装饰器 In [4]: def common(func): ...: def wrapper(*args, **kwargs): ...: print(f'args: {args}') ...: return func(*args, **kwargs) ...: return wrapper ...:
给类用的函数装饰器
- borg是一个设计模式,它保证了同一个类的实例属性的一致性问题。比较相近的是单例模式,它实现了全局只有一个实例的限制。
In [1]: def borg(cls): ...: cls._state = {} ...: orig_init = cls.__init__ ...: def new_init(self, *args, **kwargs): ...: self.__dict__ = cls._state ...: orig_init(self, *args, **kwargs) ...: cls.__init__ = new_init ...: return cls ...: In [2]: @borg ...: class A: ...: def common(self): ...: print(hex(id(self)))...: In [3]: a, b = A(), A() In [4]: b.d --------------------------------------------------------------------------- AttributeError Traceback (most recent call last) <ipython-input-104-1dbeb93aa9bb> in <module>() ----> 1 b.d AttributeError: 'A' object has no attribute 'd' In [5]: b.d = 1 In [6]: a.d Out[6]: 1 In [7]: a.common() 0x104f0c198
# Python3.7中引入的新模块attr,其中大量使用到了给类用的类装饰器 In [1]: import attr In [2]: @attr.s(hash=True) ...: class Product(object): ...: id = attr.ib() ...: author_id = attr.ib() ...:
3. 装饰器的应用场景
主要应用场景
- 记录函数行为 (日志统计、缓存、计时)
- 预处理/后处理 (配置上下文、参数字段检查、统一返回格式)
- 注入/移除参数
- 修改调用时的上下文 (实现异步或者并行)
3.1 路由装饰
from flask import Flask app = Flask(__name__) @app.route("/") def hello(): return "Hello World!" if __name__ == "__main__": app.run()
3.2 权限控制
In [1]: def check(allows): ...: def deco(fn): ...: def wrap(username, *args, **kwargs): ...: if username in allows: ...: return fn(username, *args, **kwargs) ...: return "not allow" ...: return wrap ...: return deco ...: In [2]: @check(['escape','misssun']) ...: def private(username): ...: print('Hi,boy') ...: In [3]: private('escape') Hi,boy In [4]: private('mom') Out[4]: 'not allow'
3.3 打点监控
In [9]: def timeit(process_time=False): ....: if process_time: ....: cacl = time.clock ....: else: ....: cacl = time.time ....: def inner_timeit(fn): ....: def wrap(*args, **kwargs): ....: start = cacl() ....: ret = fn(*args, **kwargs) ....: print(cacl() - start) ....: # send to monitor system ....: return ret ....: return wrap ....: return inner_timeit
3.4 缓存容器
import time from functools import wraps class DictCache(object): def __init__(self): self.cache = dict() def get(self, key): return self.cache.get(key) def set(self, key, value): self.cache[key] = value def __str__(self): return str(self.cache) def __repr__(self): return repr(self.cache) def cache(instance): def dec(fn): @wraps(fn) def wrap(*args, **kwargs): pos = ','.join((str(x) for x in args)) kw = ','.join('{}={}'.format(k, v) for k,v in sorted(kwargs.items())) key = '{}::{}::{}'.format(fn.__name__, pos, kw) ret = instance.get(key) if ret is not None: return ret ret = fn(*args, **kwargs) instance.set(key, ret) return ret return wrap return dec cache_instance = DictCache() @cache(cache_instance) def long_time_fun(n): time.sleep(n) return n print('=' * 20) print(long_time_fun(3)) print(cache_instance) print('=' * 20) print(long_time_fun(3)) print('=' * 20)
3.5 异步并发
from functools import wraps from concurrent.futures import ThreadPoolExecutor class Tomorrow(): def __init__(self, future, timeout): self._future = future self._timeout = timeout def __getattr__(self, name): result = self._wait() return result.__getattribute__(name) def _wait(self): return self._future.result(self._timeout) def async(n, base_type, timeout=None): def decorator(f): if isinstance(n, int): pool = base_type(n) elif isinstance(n, base_type): pool = n else: raise TypeError( "Invalid type: %s" % type(base_type) ) @wraps(f) def wrapped(*args, **kwargs): return Tomorrow( pool.submit(f, *args, **kwargs), timeout = timeout ) return wrapped return decorator def threads(n, timeout=None): return async(n, ThreadPoolExecutor, timeout)