最近在给大家做模拟面试和简历优化,其中发现很多人一看到什么千万级数据之类的面试题就会腿软。
也许有些人没遇过上千万数据量的表,也不清楚查询上千万数据量的时候会发生什么。
今天就来带大家实操一下,这次是基于MySQL 5.7.26做测试
准备数据
没有一千万的数据怎么办?
没有数据自己不会造吗?
造数据难吗?
代码创建一千万?
那是不可能的,太慢了,可能真的要跑一天。可以采用数据库脚本执行速度快很多。
创建表
CREATE TABLE `user_operation_log` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`user_id` varchar(64) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL,
`ip` varchar(20) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL,
`op_data` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL,
`attr1` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL,
`attr2` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL,
`attr3` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL,
`attr4` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL,
`attr5` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL,
`attr6` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL,
`attr7` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL,
`attr8` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL,
`attr9` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL,
`attr10` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL,
`attr11` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL,
`attr12` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL,
PRIMARY KEY (`id`) USING BTREE
) ENGINE = InnoDB AUTO_INCREMENT = 1 CHARACTER SET = utf8mb4 COLLATE = utf8mb4_general_ci ROW_FORMAT = Dynamic;
创建数据脚本
采用批量插入,效率会快很多,而且每1000条数就commit,数据量太大,也会导致批量插入效率慢
DELIMITER ;;
CREATE PROCEDURE batch_insert_log()
BEGIN
DECLARE i INT DEFAULT 1;
DECLARE userId INT DEFAULT 10000000;
set @execSql = 'INSERT INTO `test`.`user_operation_log`(`user_id`, `ip`, `op_data`, `attr1`, `attr2`, `attr3`, `attr4`, `attr5`, `attr6`, `attr7`, `attr8`, `attr9`, `attr10`, `attr11`, `attr12`) VALUES';
set @execData = '';
WHILE i= (SELECT id FROM `user_operation_log` LIMIT 1000000, 1) LIMIT 10
查询结果如下:
sql花费时间第一条4818ms第二条(无索引情况下)4329ms第二条(有索引情况下)199ms第三条(无索引情况下)4319ms第三条(有索引情况下)201ms
从上面结果得出结论:
- 第一条花费的时间最大,第三条比第一条稍微好点
- 子查询使用索引速度更快
缺点:只适用于id递增的情况
id非递增的情况可以使用以下写法,但这种缺点是分页查询只能放在子查询里面
注意:某些 mysql 版本不支持在 in 子句中使用 limit,所以采用了多个嵌套select
SELECT * FROM `user_operation_log` WHERE id IN (SELECT t.id FROM (SELECT id FROM `user_operation_log` LIMIT 1000000, 10) AS t)
采用 id 限定方式
这种方法要求更高些,id必须是连续递增,而且还得计算id的范围,然后使用 between,sql如下
SELECT * FROM `user_operation_log` WHERE id between 1000000 AND 1000100 LIMIT 100
SELECT * FROM `user_operation_log` WHERE id >= 1000000 LIMIT 100
查询结果如下:
sql花费时间第一条22ms第二条21ms
从结果可以看出这种方式非常快
注意:这里的 LIMIT 是限制了条数,没有采用偏移量
优化数据量大问题
返回结果的数据量也会直接影响速度
SELECT * FROM `user_operation_log` LIMIT 1, 1000000
SELECT id FROM `user_operation_log` LIMIT 1, 1000000
SELECT id, user_id, ip, op_data, attr1, attr2, attr3, attr4, attr5, attr6, attr7, attr8, attr9, attr10, attr11, attr12 FROM `user_operation_log` LIMIT 1, 1000000
查询结果如下:
sql花费时间第一条15676ms第二条7298ms第三条15960ms
从结果可以看出减少不需要的列,查询效率也可以得到明显提升
第一条和第三条查询速度差不多,这时候你肯定会吐槽,那我还写那么多字段干啥呢,直接 * 不就完事了
注意本人的 MySQL 服务器和客户端是在_同一台机器_上,所以查询数据相差不多,有条件的同学可以测测客户端与MySQL分开
SELECT * 它不香吗?
在这里顺便补充一下为什么要禁止 SELECT *。难道简单无脑,它不香吗?
主要两点: