一、题目描述
题目链接:牛客网
难易程度:简单
一只青蛙一次可以跳上 1 级台阶,也可以跳上 2 级... 它也可以跳上 n 级。求该青蛙跳上一个 n 级的台阶总共有多少种跳法。
二、解题思路
动态规划
动态规划算法的基本思想是:将待求解的问题分解成若干个相互联系的子问题,先求解子问题,然后从这些子问题的解得到原问题的解;
对于重复出现的子问题,只在第一次遇到的时候对它进行求解,并把答案保存起来,让以后再次遇到时直接引用答案,不必重新求解。动态规划算法将问题的解决方案视为一系列决策的结果。
跳上 n-1 级台阶,可以从 n-2 级跳 1 级上去,也可以从 n-3 级跳 2 级上去...,那么
f(n-1) = f(n-2) + f(n-3) + ... + f(0)
同样,跳上 n 级台阶,可以从 n-1 级跳 1 级上去,也可以从 n-2 级跳 2 级上去... ,那么
f(n) = f(n-1) + f(n-2) + ... + f(0)
综上可得
f(n) - f(n-1) = f(n-1)
即
f(n) = 2*f(n-1)
f(1) 和 f(2) 可以提前算出来:
f(1) = 1
f(2) = 2
复杂度分析
时间复杂度 O(N) :计算 f(n) 需循环 n 次,每轮循环内计算操作使用 O(1) 。
空间复杂度 O(1) : 几个标志变量使用常数大小的额外空间。
三、代码实现
public int jumpFloorII(int target) {
int[] dp = new int[target + 1];
//初始化前面两个
dp[1] = 1;
dp[2] = 2;
//依次乘2
for(int i = 3; i