更多技术交流、求职机会,欢迎关注字节跳动数据平台微信公众号,回复【1】进入官方交流群
由于流量红利逐渐消退,越来越多的广告企业和从业者开始探索精细化营销的新路径,取代以往的全流量、粗放式的广告轰炸。精细化营销意味着要在数以亿计的人群中优选出那些最具潜力的目标受众,这无疑对提供基础引擎支持的数据仓库能力,提出了极大的技术挑战。
本篇内容将聚焦字节跳动OLAP引擎技术和落地经验,从广告营销场景出发,上篇讲解利用ByteHouse 加速实时人群包分析查询的技术原理;下篇以字节跳动内部场景为例,具体拆解广告业务的实现逻辑和业务效果。(文本为下篇)
广告精准投放场景
广告投放过程一般包含数据收集->数据整合->人群圈选->广告投放->反馈分析等关键流程,人群圈选是广告精准投放的关键步骤,它帮助确定广告目标受众,辅助投放平台根据不同受众和广告目标优化投放策略,提升广告收益;
人群预估
- 人群预估主要是根据一定的圈选条件,确认命中的用户数目。在广告精准投放过程中,广告主需要知道当前选定的人群组合中大概会有多少人,用于辅助判断投放情况进而确定投放预算,通常要求计算时间不能超过 5 秒。
广告投放
广告精准投放过程中遇到的问题与痛点:
ByteHouse BitEngine方案
方案简介
新查询引擎
- 针对广告人群预估业务开发的新查询引擎,基于ClickHouse提供的MergeTree Family系列引擎,添加了新的bitmap64类型和一系列的相关聚合函数。BitEngine提供的bitmap64类型适合存储和计算大量的用户ID之间的关系;在广告人群预估业务中,bitmap64类型用于存储人群包数据,然后将人群包之间的交并补计算转化为bitmap之间的交并补,从而达到远超普通查询的性能指标。
实现步骤
创建一个bitmap64类型,可以将用户ID直接存储在bitmap中,提供一系列交并补的聚合计算,并且还希望可以充分利用多核CPU的并行计算能力,由此我们设计了BitEngine。示例如下
CREATE TABLE cdp.tag_uids_map (
tags String,
uids BitMap64 BitEngineEncode
)ENGINE = HaMergeTree('/clickhouse/xxxx/{shard}', '{replica}')
ORDER BY tag
tag_uids_map存储格式如下
tag | uids |
---|---|
A | {10001,20001,30001,40001,50001,60001,70001,80001,90001} |
B | {10001,20001,20002,20003,20004,20005,20006,20007,20008} |
要查询 A&B 的结果 SQL 为
SELECT bitmapCount('A&B') FROM tag_uids_map