jdk源码解读并发包LockReentrantLock(1)lock()与unlock()方法走读

2023年 8月 21日 49.2k 0

介绍

ReentrantLock 是一个互斥锁,在基本行为和机制上与synchonized一样,只不过synchonized用方法和声明访问了隐式的锁监视器,但是ReentrantLock 做了功能上的扩展。

当锁不被其他线程拥有,一个线程会成功的申请锁资源并立即返回。如果当前线程已经拥有了锁,再申请时也会立即返回。通过调用方法isHeldByCurrentThread()获取是否当前线程获得了锁,getHoldCount()得到获得几次锁资源。

此类的构造方法接受一个可选的公平 参数。当设置为 true 时,在多个线程的争用下,这些锁倾向于将访问权授予等待时间最长的线程。否则此锁将无法保证任何特定访问顺序。与采用默认设置(使用不公平锁)相比,使用公平锁的程序在许多线程访问时表现为很低的总体吞吐量(即速度很慢,常常极其慢),但是在获得锁和保证锁分配的均衡性时差异较小。 不过要注意的是,公平锁不能保证线程调度的公平性。因此,使用公平锁的众多线程中的一员可能获得多倍的成功机会,这种情况发生在其他活动线程没有被处理并且目前并未持有锁时。 还要注意的是,未定时的 tryLock 方法并没有使用公平设置。因为即使其他线程正在等待,只要该锁是可用的,此方法就可以获得成功。

推荐使用用try-catch 块代码去调用lock(),如下:

class X {
   private final ReentrantLock lock = new ReentrantLock();
   // ...
   public void m() {
     lock.lock();  // block until condition holds
     try {
       // ... method body
     } finally {
       lock.unlock()
     }
   }
 }}

除了实现lock接口,这个类还定义了一些public和protected方法去检查锁的状态。有些方法仅仅用来监控和维护。

这个类的序列化行为与内建的锁一样:反序列化的锁是没有获取锁状态,无论当它序列化时是否获取锁。

这个锁支持最大2147483647次的重入次数,超过这个数会报错。

类关系图:

从这个图可以看到ReentrantLock类实现了接口Lock和Serializable。

public class ReentrantLock implements Lock, java.io.Serializable {

ReentrantLock类的API调用都委托给一个内部类 Sync ,而该类继承AbstractQueuedSynchronizer类;

	/**
 	 * Base of synchronization control for this lock. Subclassed
 	 * into fair and nonfair versions below. Uses AQS state to
 	 * represent the number of holds on the lock.
 	*/
        abstract static class Sync extends AbstractQueuedSynchronizer 

而Sync又分为两个子类:公平锁和非公平锁,默认为非公平锁

/**
	 * Sync object for fair locks
	 */
	static final class FairSync extends Sync
//Sync object for Nonfair locks


static final class NonfairSync extends Sync

ReentrantLock调用lock()方法时的调用关系图

非公平锁类调用lock()方法时的调用关系:

代码解析:

  • nofairTryAcquire:
  • /**
     * Performs non-fair tryLock.  tryAcquire is implemented in
     * subclasses, but both need nonfair try for trylock method.
     
    final boolean nonfairTryAcquire(int acquires) {
        final Thread current = Thread.currentThread();
        int c = getState();
        if (c == 0) {
            if (compareAndSetState(0, acquires)) {
                setExclusiveOwnerThread(current);
                return true;
            }
        }
        else if (current == getExclusiveOwnerThread()) {
            int nextc = c + acquires;
            if (nextc < 0) // overflow
                throw new Error("Maximum lock count exceeded");
            setState(nextc);
            return true;
        }
        return false;
    }
    

    首先获取当前状态(初始化为0),当它等于0的时候,代表还没有任何线程获得该锁,然后通过CAS(底层是通过CompareAndSwapInt实现)改变state,如果设置成功设置当前线程为持有锁的线程;其他线程会直接返回false;当该线程重入的时候,state已经不等于0,这个时候并不需要CAS,因为该线程已经持有锁,然后会重新通过setState设置state的值,这里就实现了一个偏向锁的功能,即锁偏向该线程;

  • acquireQueued
  • 只有当锁被一个线程持有,另外一个线程请求获得该锁的时候才会进入这个方法。

    调用前首先调用addWaiter

    addWaiter

    /**  * Creates and enqueues node for current thread and given mode.
    *  * @param mode Node.EXCLUSIVE for exclusive, Node.SHARED for shared  
    * @return the new node  
    */ 
    
    private Node addWaiter(Node mode) {
    
        Node node = new Node(Thread.currentThread(), mode);
    // Try the fast path of enq; backup to full enq on failure     
    Node pred = tail;     
    if (pred != null) {         
        node.prev = pred;         
    if (compareAndSetTail(pred, node)) {
        pred.next = node;             
        return node;         
    }     
    }     
        enq(node);
        return node; 
    } 
    
    

    首先,new一个节点,这个时候模式为:mode为 Node.EXCLUSIVE,默认为null即排它锁;

    然后:

    如果该队列已经有node即tail!=null,则将新节点的前驱节点置为tail,再通过CAS将tail指向当前节点,前驱节点的后继节点指向当前节点,然后返回当前节点;

    如果队列为空或者CAS失败,则通过enq入队:

    /**
     * Inserts node into queue, initializing if necessary. See picture above.
     * @param node the node to insert
     * @return node's predecessor
     */
    private Node enq(final Node node) {
        for (;;) {
            Node t = tail;
            if (t == null) { // Must initialize
                if (compareAndSetHead(new Node()))
                    tail = head;
            } else {
                node.prev = t;
                if (compareAndSetTail(t, node)) {
                    t.next = node;
                    return t;
                }
            }
        }
    }
    

    进队的时候,要么是第一个入队并且设置head节点并且循环设置tail,要么是add tail,如果CAS不成功,则会无限循环,直到设置成功,即使高并发的场景,也最终能够保证设置成功,然后返回包装好的node节点;

    acquireQueued:

    /**
     * Acquires in exclusive uninterruptible mode for thread already in
     * queue. Used by condition wait methods as well as acquire.
     *
     * @param node the node
     * @param arg the acquire argument
     * @return {@code true} if interrupted while waiting
     */
    final boolean acquireQueued(final Node node, int arg) {
        boolean failed = true;
        try {
            boolean interrupted = false;
            for (;;) {
                final Node p = node.predecessor();
                if (p == head && tryAcquire(arg)) {
                    setHead(node);
                    p.next = null; // help GC
                    failed = false;
                    return interrupted;
                }
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    interrupted = true;
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }
    

    该方法的主要作用就是真正让node入队,同时将已经进入虚拟队列的节点进行阻塞,我们看到,如果当前节点的前驱节点是head并且尝试获取锁的时候成功了,则直接返回,不需要阻塞;同时把当前节点设为头结点,原头结点则释放。

    如果前驱节点不是头节点或者获取锁的时候失败了,则进行判定是否需要阻塞:

    /**
     * Checks and updates status for a node that failed to acquire.
     * Returns true if thread should block. This is the main signal
     * control in all acquire loops.  Requires that pred == node.prev.
     *
     * @param pred node's predecessor holding status
     * @param node the node
     * @return {@code true} if thread should block
     */
    private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
    int ws = pred.waitStatus;
    if (ws == Node.SIGNAL)
    /*
             * This node has already set status asking a release
             * to signal it, so it can safely park.
             */
    return true;
    if (ws > 0) {
    /*
             * Predecessor was cancelled. Skip over predecessors and
             * indicate retry.
             */
    do {
    node.prev = pred = pred.prev;
    } while (pred.waitStatus > 0);
    pred.next = node;
    } else {
    /*
             * waitStatus must be 0 or PROPAGATE.  Indicate that we
             * need a signal, but don't park yet.  Caller will need to
             * retry to make sure it cannot acquire before parking.
             */
    compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
    }
    return false;
    }
    

    这段代码对该节点的前驱节点的状态进行判断,如果前驱节点已经处于signal状态,则返回true,表明当前节点可以进入阻塞状态;

    否则,将前驱节点状态CAS置为signal状态,然后通过上层的for循环进入parkAndCheckInterrupt代码块park:

    /**
     * Convenience method to park and then check if interrupted
     *
     * @return {@code true} if interrupted
     */
    private final boolean parkAndCheckInterrupt() {
    LockSupport.park(this);
    return Thread.interrupted();
    }
    

    这个时候将该线程交给操作系统内核进行阻塞;

    总体来讲,acquireQueued就是依靠前驱节点的状态来决定当前线程是否应该处于阻塞状态,如果前驱节点处于cancel状态,则丢弃这些节点,重新构建队列;

    公平锁类调用lock()方法时的调用关系:

    非公平锁类和公平锁类调用lock()时的区别:

    • 非公平锁类调用lock()时,不排队先尝试获取锁资源,修改状态,修改不成功再入队。具体实现先调用AbstractQueuedSynchronizer的方法

    • protected final boolean compareAndSetState(int expect, int update) ,而公平锁类是直接入队,不给插队的机会,当直接插队失败才会入队。

    调用tryAcquire()时也不同,

    • 公平锁类的tryAcquire()
    /**
     * Fair version of tryAcquire.  Don't grant access unless
     * recursive call or no waiters or is first.
     */
    protected final boolean tryAcquire(int acquires) {
    final Thread current = Thread.currentThread();
    int c = getState();
    if (c == 0) {
    if (!hasQueuedPredecessors() &&
                compareAndSetState(0, acquires)) {
                setExclusiveOwnerThread(current);
    return true;
            }
        }
    else if (current == getExclusiveOwnerThread()) {
    int nextc = c + acquires;
    if (nextc < 0)
    throw new Error("Maximum lock count exceeded");
            setState(nextc);
    return true;
        }
    return false;
    }
    
    • 非公平锁的tryAcquire()
    protected final boolean tryAcquire(int acquires) {
    return nonfairTryAcquire(acquires);
    }
    
    /**
    * Performs non-fair tryLock. tryAcquire is implemented in
    * subclasses, but both need nonfair try for trylock method.
    */
    final boolean nonfairTryAcquire(int acquires) {
    final Thread current = Thread.currentThread();
    int c = getState();
    if (c == 0) {
    if (compareAndSetState(0, acquires)) {
    setExclusiveOwnerThread(current);
    return true;
    }
    }
    else if (current == getExclusiveOwnerThread()) {
    int nextc = c + acquires;
    if (nextc

    相关文章

    JavaScript2024新功能:Object.groupBy、正则表达式v标志
    PHP trim 函数对多字节字符的使用和限制
    新函数 json_validate() 、randomizer 类扩展…20 个PHP 8.3 新特性全面解析
    使用HTMX为WordPress增效:如何在不使用复杂框架的情况下增强平台功能
    为React 19做准备:WordPress 6.6用户指南
    如何删除WordPress中的所有评论

    发布评论