Flink部署、执行模式
Flink的部署模式
本地模式、Standalone模式和FlinkonYARN模式是Flink的三种常见部署模式。
1.Local本地模式:
在本地模式下,Flink以单机模式运行,无需启动分布式资源管理器。这种模式适用于本地开发和测试,用于验证Flink代码的正确性和性能。
2.Standalone模式:
在Standalone模式下,Flink作为一个独立的集群运行。需要启动Flink的JobManager和TaskManager,JobManager负责接收和调度任务,而TaskManager负责执行任务。
3.Flink on YARN模式:
在FlinkonYARN模式下,Flink在YARN(Hadoop的资源调度和集群管理系统)之上运行。Flink作为一个YARN应用程序,利用YARN来管理资源分配和任务调度。使用这种模式,可以充分利用Hadoop集群的资源,实现Flink的分布式计算。
Flink的执行模式
Flink可以通过以下三种方式之一执行应用程序:
1.Session Mode:会话模式
会话模式需要先启动一个集群,保持一个会话,在这个会话中通过客户端提交作业。集群启动时所有资源就都已经确定,所有提交的作业会竞争集群中的资源。适合任务规模小,执行时间短的大量作业。
Flink的作业执行环境会一直保留在集群上,直到会话被显式终止。这样,可以提交多个作业,它们可以共享相同的集群资源和状态,从而实现更高的效率和资源利用。
2.Per-Job Mode:单作业模式
每个Flink应用程序作为一个独立的作业被提交和执行。
每次提交的Flink应用程序都会创建一个独立的作业执行环境,该作业执行环境仅用于执行该特定的作业。
当作业完成后,作业执行环境会被释放,集群关闭,资源释放
3.Application Mode:应用模式
应用模式算是前2种模式的升级,前2种模式中,Flink程序代码是在客户端执行,然后客户端提交给JobManager,客户端需要占用大量网络带宽。
应用模式需要为每一个提交的应用单独启动一个JobManager(应用程序在JobManager执行),也就是创建一个集群。这个JobManager只为执行这一个应用而存在,执行结束之后JobManager关闭。
4.三种模式的区别:
集群生命周期和资源隔离保证
应用程序的main()方法是在客户端还是在集群上执行
Local本地模式
Local模式是Flink提供的最简单部署模式,可以在单台服务器上运行,适用于日常的开发和调试。
注意:Flink的运行依赖JAVA环境,需要预先安装好JDK
下载安装
Flink下载地址: https://archive.apache.org/dist/flink/
下载Flink
wget https://repo.huaweicloud.com/apache/flink/flink-1.17.0/flink-1.17.0-bin-scala_2.12.tgz
解压、重命名
tar -zxvf flink-1.17.0-bin-scala_2.12.tgz
mv flink-1.17.0 flink
启动、停止Flink
不需要进行任何配置,直接使用Flink默认配置,直接运行脚本启动
bin/start-cluster.sh
停止Flink
bin/stop-cluster.sh
直接访问:http://IP:8081
,可以看到Flink的后台管理界面
每个taskmanager有3个solt
提交测试任务
提交一个测试任务:
./bin/flink run examples/batch/WordCount.jar
在控制台直接看到输出
[root@node01 flink]# ./bin/flink run examples/batch/WordCount.jar
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/usr/local/program/flink/lib/log4j-slf4j-impl-2.17.1.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/usr/local/program/hadoop/share/hadoop/common/lib/slf4j-log4j12-1.7.25.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.apache.logging.slf4j.Log4jLoggerFactory]
Executing WordCount example with default input data set.
Use --input to specify file input.
Printing result to stdout. Use --output to specify output path.
Job has been submitted with JobID a946d0abf84ac6848a823cec43f7056f
Program execution finished
Job with JobID a946d0abf84ac6848a823cec43f7056f has finished.
Job Runtime: 584 ms
Accumulator Results:
- 1a50b4c9582d4d35a854872c62391768 (java.util.ArrayList) [170 elements]
(a,5)
(action,1)
(after,1)
(against,1)
(all,2)
(and,12)
(arms,1)
(arrows,1)
(awry,1)
同样,在Flink的后台管理界面 Completed Jobs 一栏可以看到刚才提交执行的程序:
停止作业
可以直接在 WEB 界面上点击对应作业的 Cancel Job 按钮进行取消,也可以使用命令行进行取消。
使用命令行进行取消时,需要先获取到作业的JobId
bin/flink list
获取到JobId后,使用flink cancel JobId
命令取消作业
bin/flink cancel a946d0abf84ac6848a823cec43f7056f
Standalone独立模式
Standalone模式是集群模式的一种,独立模式是独立运行的,不依赖任何外部的资源管理平台,存在资源不足,出现故障不会自动扩展或重分配资源的能力,一般用在开发测试或作业非常少的场景下。
优缺点:
部署相对简单,可以支持小规模,少量的任务运行
缺少系统层面对集群中Job的管理,容易遭成资源分配不均匀
资源隔离相对简单,任务之间资源竞争严重
会话模式
会话模式部署需要先启动集群,集群资源固定,通过Web页面客户端提交任务,可以多个任务。
搭建一个Flink集群,参考:搭建Flink集群、集群HA高可用以及配置历史服务器
1.启动 Flink 集群:
通过
bin/start-cluster.sh
脚本启动集群
2.打开Flink Web UI
在浏览器中输入
http://node01:8081/
地址打开Flink Web UI
3.提交Flink作业
在Flink Web UI中选择要提交的 Flink 作业 jar 包,并指定作业参数和作业名称。
bin/flink run ../examples/streaming/WordCount.jar
4.查看Flink作业
提交作业之后,在 Flink Web UI 上会看到作业的运行状态,可以查看作业日志和监控指标等信息。
5.停止Flink作业
可以在Flink Web UI中停止作业,也可以使用
bin/flink cancel jobID
命令停止指定的作业
单作业模式
Standalone集群并不支持单作业模式部署,单作业模式需要借助一些资源管理平台。
应用模式
应用模式下不会提前创建集群,因此不能调用
start-cluster.sh
脚本,但是可以使用在bin目录下的standalone-job.sh
来创建一个JobManager。
1.将Flink应用程序的jar包放到Flink的安装路径下的lib目录下。
[root@node01 flink]# mv /root/demo-1.0-SNAPSHOT.jar lib
2.启动netcat
[root@node01 ~]# nc -lk 8888
3.启动JobManager
直接指定作业入口类,脚本会到lib目录扫描所有的jar包
[root@node01 flink]# bin/standalone-job.sh start --job-classname cn.ybzy.demo.WordCountDemo
Starting standalonejob daemon on host node01.
4.启动TaskManager
[root@node01 flink]# bin/taskmanager.sh start
Starting taskexecutor daemon on host node01.
5.查看进程
[root@node01 flink]# jps
11973 Jps
11240 TaskManagerRunner
11898 StandaloneApplicationClusterEntryPoint
6.查看Web UI
一直是如下所示状态,明显异常:
查看flink/log/flink-root-standalonejob-1-node01.log
日志
1.异常提示资源不够:
Caused by: java.util.concurrent.CompletionException: org.apache.flink.runtime.jobmanager.scheduler.NoResourceAvailableException: Could not acquire the minimum required resources.
at java.util.concurrent.CompletableFuture.encodeThrowable(CompletableFuture.java:292) ~[?:1.8.0_371]
at java.util.concurrent.CompletableFuture.completeThrowable(CompletableFuture.java:308) ~[?:1.8.0_371]
at java.util.concurrent.CompletableFuture.uniApply(CompletableFuture.java:607) ~[?:1.8.0_371]
at java.util.concurrent.CompletableFuture$UniApply.tryFire(CompletableFuture.java:591) ~[?:1.8.0_371]
at java.util.concurrent.CompletableFuture.postComplete(CompletableFuture.java:488) ~[?:1.8.0_371]
at java.util.concurrent.CompletableFuture.completeExceptionally(CompletableFuture.java:1990) ~[?:1.8.0_371]
修改配置文件,调大资源,发现无效。
# jobmanager.memory.process.size: 1600m
jobmanager.memory.process.size: 2000m
#taskmanager.memory.process.size: 1728m
taskmanager.memory.process.size: 2600m
后来仔细观察日志,发现一处核心异常如下异常:
org.apache.flink.runtime.resourcemanager.slotmanager.DeclarativeSlotManager [] - Received resource requirements from job 6f4f54c45d7bb59531f537b966776793: [ResourceRequirement{resourceProfile=ResourceProfile{UNKNOWN}, numberOfRequiredSlots=3}]
关键词numberOfRequiredSlots=3
尤为重要,JobManager启动默认只有1Slot,Slot请求资源不够!
编辑conf/flink-conf.yaml文件
# taskmanager.numberOfTaskSlots: 1
# 修改Slot数量为3
taskmanager.numberOfTaskSlots: 3
停止taskmanager、standalone-job,重新启动,Web UI显示明显正常
发送测试数据
[root@node01 ~]# nc -lk 8888
abc bcd cdf
7.停止集群
[root@node01 flink]# bin/taskmanager.sh stop
Stopping taskexecutor daemon (pid: 14117) on host node01.
[root@node01 flink]# bin/standalone-job.sh stop
No standalonejob daemon (pid: 14813) is running anymore on node01.
8.总结:
在Flink中,Slot是Flink作业管理的资源基本单位,一个任务不一定会占用1个Slot。
当向Flink提交一个任务时,Flink会为该任务分配所需的Slot数量。通常取决于以下几个因素:
任务的并行度(Parallelism):如果任务的并行度很高,即需要同时执行多个子任务,则可能需要使用多个Slot。
TaskManager的资源:如果TaskManager的资源非常丰富,例如拥有多个CPU或GPU核心,则可以分配更多的Slot来运行任务。反之,则可能只能分配较少的Slot。
任务的资源需求:如果任务需要大量的内存或计算资源,则可能需要分配更多的Slot来满足需求。
个人在编写Flink程序时,设置了并行度,打包上传运行,由于JobManager的默认numberOfTaskSlots配置为1,Solt数量不够,故出现上述异常。
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(3);
YARN运行模式
客户端把Flink应用提交给Yarn的ResourceManager,Yarn的ResourceManager会向Yarn的NodeManager申请容器。在这些容器上,Flink会部署JobManager和TaskManager的实例,从而启动集群。Flink会根据运行在JobManger上的作业所需要的Slot数量动态分配TaskManager资源。
1.安装Hadoop
安装Hadoop参考:搭建Hadoop3.X完全分布式集群环境
2.配置环境变量
# Hadoop
export HADOOP_HOME=/usr/local/program/hadoop
export PATH=$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$PATH
# Flink
export HADOOP_CONF_DIR=${HADOOP_HOME}/etc/hadoop
export HADOOP_CLASSPATH=`hadoop classpath`
3.启动Hadoop集群,包括HDFS和YARN
[root@node01 hadoop]# sbin/start-all.sh
4.启动netcat
nc -lk 8888
会话模式
YARN的会话模式需要首先申请一个YARN会话(YARN Session)来启动Flink集群。
启动Hadoop集群
启动Hadoop集群,包括HDFS和YARN
[root@node01 hadoop]# sbin/start-all.sh
申请一个YARN会话
查看yarn-session.sh
命令帮助
[root@node01 flink]# bin/yarn-session.sh --help
Usage:
Optional
-at,--applicationType Set a custom application type for the application on YARN
-D use value for given property
-d,--detached If present, runs the job in detached mode
-h,--help Help for the Yarn session CLI.
-id,--applicationId Attach to running YARN session
-j,--jar Path to Flink jar file
-jm,--jobManagerMemory Memory for JobManager Container with optional unit (default: MB)
-m,--jobmanager Set to yarn-cluster to use YARN execution mode.
-nl,--nodeLabel Specify YARN node label for the YARN application
-nm,--name Set a custom name for the application on YARN
-q,--query Display available YARN resources (memory, cores)
-qu,--queue Specify YARN queue.
-s,--slots Number of slots per TaskManager
-t,--ship Ship files in the specified directory (t for transfer)
-tm,--taskManagerMemory Memory per TaskManager Container with optional unit (default: MB)
-yd,--yarndetached If present, runs the job in detached mode (deprecated; use non-YARN specific option instead)
-z,--zookeeperNamespace Namespace to create the Zookeeper sub-paths for high availability mode
主要参数:
-d:分离模式,让Flink YARN客户端后台运行,即YARN session可以后台运行
-jm(--jobManagerMemory):配置JobManager所需内存,默认单位MB
-nm(--name):配置在YARN UI界面上显示的任务名
-qu(--queue):指定YARN队列名
-tm(--taskManager):配置每个TaskManager所使用内存
执行脚本命令向YARN集群申请资源,开启一个YARN会话,启动Flink集群
[root@node01 flink]# bin/yarn-session.sh -nm flink-test
......
2023-06-12 22:03:01,088 INFO org.apache.hadoop.hdfs.protocol.datatransfer.sasl.SaslDataTransferClient [] - SASL encryption trust check: localHostTrusted = false, remoteHostTrusted = false
2023-06-12 22:03:01,428 INFO org.apache.hadoop.hdfs.protocol.datatransfer.sasl.SaslDataTransferClient [] - SASL encryption trust check: localHostTrusted = false, remoteHostTrusted = false
2023-06-12 22:03:01,457 INFO org.apache.hadoop.hdfs.protocol.datatransfer.sasl.SaslDataTransferClient [] - SASL encryption trust check: localHostTrusted = false, remoteHostTrusted = false
2023-06-12 22:03:01,476 INFO org.apache.flink.yarn.YarnClusterDescriptor [] - Cannot use kerberos delegation token manager, no valid kerberos credentials provided.
2023-06-12 22:03:01,480 INFO org.apache.flink.yarn.YarnClusterDescriptor [] - Submitting application master application_1686577483648_0001
2023-06-12 22:03:01,613 INFO org.apache.hadoop.yarn.client.api.impl.YarnClientImpl [] - Submitted application application_1686577483648_0001
2023-06-12 22:03:01,613 INFO org.apache.flink.yarn.YarnClusterDescriptor [] - Waiting for the cluster to be allocated
2023-06-12 22:03:01,615 INFO org.apache.flink.yarn.YarnClusterDescriptor [] - Deploying cluster, current state ACCEPTED
2023-06-12 22:03:06,406 INFO org.apache.flink.yarn.YarnClusterDescriptor [] - YARN application has been deployed successfully.
2023-06-12 22:03:06,407 INFO org.apache.flink.yarn.YarnClusterDescriptor [] - Found Web Interface node03:37824 of application 'application_1686577483648_0001'.
JobManager Web Interface: http://node03:37824
查看Yarn、Flink
访问http://node01:8088/cluster
查看yarn
YARN Session启动之后会给出一个Web UI地址以及一个YARN application ID
2023-06-12 22:03:06,406 INFO org.apache.flink.yarn.YarnClusterDescriptor [] - YARN application has been deployed successfully.
2023-06-12 22:03:06,407 INFO org.apache.flink.yarn.YarnClusterDescriptor [] - Found Web Interface node03:37824 of application 'application_1686577483648_0001'.
JobManager Web Interface: http://node03:37824
访问给出的地址:http://node03:37824
提交作业
可以通过Web UI或者命令行两种方式提交作业
a.通过Web UI提交作业
b.通过命令行提交作业
1.将Flink程序打Jar包并上传至集群
2.执行命令将任务提交到已经开启的Yarn-Session中运行
客户端可以自行确定JobManager的地址,也可以通过-m或者-jobmanager参数指定JobManager的地址。同时JobManager的地址在YARN Session的启动页面中可以找到。
[root@node01 ~]# /usr/local/program/flink/bin/flink run -c cn.ybzy.demo.WordCountDemo /root/demo-1.0-SNAPSHOT.jar
2023-06-12 22:21:08,468 INFO org.apache.flink.yarn.cli.FlinkYarnSessionCli [] - Found Yarn properties file under /tmp/.yarn-properties-root.
2023-06-12 22:21:08,468 INFO org.apache.flink.yarn.cli.FlinkYarnSessionCli [] - Found Yarn properties file under /tmp/.yarn-properties-root.
2023-06-12 22:21:08,824 WARN org.apache.flink.yarn.configuration.YarnLogConfigUtil [] - The configuration directory ('/usr/local/program/flink/conf') already contains a LOG4J config file.If you want to use logback, then please delete or rename the log configuration file.
2023-06-12 22:21:08,860 INFO org.apache.hadoop.yarn.client.RMProxy [] - Connecting to ResourceManager at node01/192.168.1.100:8032
2023-06-12 22:21:08,986 INFO org.apache.flink.yarn.YarnClusterDescriptor [] - No path for the flink jar passed. Using the location of class org.apache.flink.yarn.YarnClusterDescriptor to locate the jar
2023-06-12 22:21:09,049 INFO org.apache.flink.yarn.YarnClusterDescriptor [] - Found Web Interface node03:37824 of application 'application_1686577483648_0001'.
Job has been submitted with JobID cdf1ff7b48472b3d7bc413a1ee9700e8
查看、测试作业
通过Flink的Web UI页面查看提交任务的运行情况,Flink会根据运行在JobManger上的作业所需要的Slot数量动态分配TaskManager资源。
发送数据测试
[root@node01 program]# nc -lk 8888
abc bcd cdf
单作业模式
在YARN环境中,由于有了外部平台做资源调度,因此也可以直接向YARN提交一个单独的作业,从而启动一个Flink集群。
提交作业
执行命令提交作业
[root@node01 flink]# bin/flink run -t yarn-per-job -c cn.ybzy.demo.WordCountDemo /root/demo-1.0-SNAPSHOT.jar
.....
2023-06-12 22:46:26,984 INFO org.apache.hadoop.hdfs.protocol.datatransfer.sasl.SaslDataTransferClient [] - SASL encryption trust check: localHostTrusted = false, remoteHostTrusted = false
2023-06-12 22:46:27,009 INFO org.apache.hadoop.hdfs.protocol.datatransfer.sasl.SaslDataTransferClient [] - SASL encryption trust check: localHostTrusted = false, remoteHostTrusted = false
2023-06-12 22:46:27,029 INFO org.apache.flink.yarn.YarnClusterDescriptor [] - Cannot use kerberos delegation token manager, no valid kerberos credentials provided.
2023-06-12 22:46:27,034 INFO org.apache.flink.yarn.YarnClusterDescriptor [] - Submitting application master application_1686577483648_0004
2023-06-12 22:46:27,061 INFO org.apache.hadoop.yarn.client.api.impl.YarnClientImpl [] - Submitted application application_1686577483648_0004
2023-06-12 22:46:27,061 INFO org.apache.flink.yarn.YarnClusterDescriptor [] - Waiting for the cluster to be allocated
2023-06-12 22:46:27,063 INFO org.apache.flink.yarn.YarnClusterDescriptor [] - Deploying cluster, current state ACCEPTED
2023-06-12 22:46:31,086 INFO org.apache.flink.yarn.YarnClusterDescriptor [] - YARN application has been deployed successfully.
2023-06-12 22:46:31,087 INFO org.apache.flink.yarn.YarnClusterDescriptor [] - Found Web Interface node02:42192 of application 'application_1686577483648_0004'.
Job has been submitted with JobID dfcb72ebf4a5f33d8e7967d6beaaf96d
注意:在使用-d
参数启动时,启动过程中可能会出现如下异常:
Exception in thread "Thread-5" java.lang.IllegalStateException: Trying to access closed classloader. Please check if you store classloaders directly or indirectly in static fields. If the stacktrace suggests that the leak occurs in a third party library and cannot be fixed immediately, you can disable this check with the configuration 'classloader.check-leaked-classloader'.
at org.apache.flink.util.FlinkUserCodeClassLoaders$SafetyNetWrapperClassLoader.ensureInner(FlinkUserCodeClassLoaders.java:184)
at org.apache.flink.util.FlinkUserCodeClassLoaders$SafetyNetWrapperClassLoader.getResource(FlinkUserCodeClassLoaders.java:208)
at org.apache.hadoop.conf.Configuration.getResource(Configuration.java:2780)
at org.apache.hadoop.conf.Configuration.getStreamReader(Configuration.java:3036)
at org.apache.hadoop.conf.Configuration.loadResource(Configuration.java:2995)
at org.apache.hadoop.conf.Configuration.loadResources(Configuration.java:2968)
at org.apache.hadoop.conf.Configuration.getProps(Configuration.java:2848)
at org.apache.hadoop.conf.Configuration.get(Configuration.java:1200)
at org.apache.hadoop.conf.Configuration.getTimeDuration(Configuration.java:1812)
at org.apache.hadoop.conf.Configuration.getTimeDuration(Configuration.java:1789)
at org.apache.hadoop.util.ShutdownHookManager.getShutdownTimeout(ShutdownHookManager.java:183)
at org.apache.hadoop.util.ShutdownHookManager.shutdownExecutor(ShutdownHookManager.java:145)
at org.apache.hadoop.util.ShutdownHookManager.access$300(ShutdownHookManager.java:65)
at org.apache.hadoop.util.ShutdownHookManager$1.run(ShutdownHookManager.java:102)
解决方案是在flink的/conf/flink-conf.yaml
配置文件中设置
classloader.check-leaked-classloader: false
查看Yarn、Flink
访问http://node01:8088/cluster
查看
打开Flink Web UI页面进行监控
a.访问启动日志中的JobManager地址,如:node02:42192
b.也可以在http://node01:8088/cluster
页面中跳转到Flink的Web UI界面
查看、取消作业
[root@node01 flink]# bin/flink list -t yarn-per-job -Dyarn.application.id=application_1686577483648_0004
2023-06-12 22:55:43,755 INFO org.apache.flink.yarn.cli.FlinkYarnSessionCli [] - Found Yarn properties file under /tmp/.yarn-properties-root.
2023-06-12 22:55:43,755 INFO org.apache.flink.yarn.cli.FlinkYarnSessionCli [] - Found Yarn properties file under /tmp/.yarn-properties-root.
2023-06-12 22:55:43,864 WARN org.apache.flink.yarn.configuration.YarnLogConfigUtil [] - The configuration directory ('/usr/local/program/flink/conf') already contains a LOG4J config file.If you want to use logback, then please delete or rename the log configuration file.
2023-06-12 22:55:43,927 INFO org.apache.hadoop.yarn.client.RMProxy [] - Connecting to ResourceManager at node01/192.168.1.100:8032
2023-06-12 22:55:44,087 INFO org.apache.flink.yarn.YarnClusterDescriptor [] - No path for the flink jar passed. Using the location of class org.apache.flink.yarn.YarnClusterDescriptor to locate the jar
2023-06-12 22:55:44,159 INFO org.apache.flink.yarn.YarnClusterDescriptor [] - Found Web Interface node02:42192 of application 'application_1686577483648_0004'.
Waiting for response...
------------------ Running/Restarting Jobs -------------------
12.06.2023 22:46:30 : dfcb72ebf4a5f33d8e7967d6beaaf96d : Flink Streaming Job (RUNNING)
--------------------------------------------------------------
No scheduled jobs.
取消作业
# 如果取消作业,整个Flink集群会停掉
bin/flink cancel -t yarn-per-job -Dyarn.application.id=application_XXXX
[root@node01 flink]# bin/flink cancel -t yarn-per-job -Dyarn.application.id=application_1686577483648_0004 dfcb72ebf4a5f33d8e7967d6beaaf96d
SLF4J: Actual binding is of type [org.apache.logging.slf4j.Log4jLoggerFactory]
2023-06-12 22:57:06,430 INFO org.apache.flink.yarn.cli.FlinkYarnSessionCli [] - Found Yarn properties file under /tmp/.yarn-properties-root.
2023-06-12 22:57:06,430 INFO org.apache.flink.yarn.cli.FlinkYarnSessionCli [] - Found Yarn properties file under /tmp/.yarn-properties-root.
Cancelling job dfcb72ebf4a5f33d8e7967d6beaaf96d.
2023-06-12 22:57:06,560 WARN org.apache.flink.yarn.configuration.YarnLogConfigUtil [] - The configuration directory ('/usr/local/program/flink/conf') already contains a LOG4J config file.If you want to use logback, then please delete or rename the log configuration file.
2023-06-12 22:57:06,638 INFO org.apache.hadoop.yarn.client.RMProxy [] - Connecting to ResourceManager at node01/192.168.1.100:8032
2023-06-12 22:57:06,830 INFO org.apache.flink.yarn.YarnClusterDescriptor [] - No path for the flink jar passed. Using the location of class org.apache.flink.yarn.YarnClusterDescriptor to locate the jar
2023-06-12 22:57:06,895 INFO org.apache.flink.yarn.YarnClusterDescriptor [] - Found Web Interface node02:42192 of application 'application_1686577483648_0004'.
Cancelled job dfcb72ebf4a5f33d8e7967d6beaaf96d.
应用模式
应用模式同样非常简单,与单作业模式类似,直接执行flink run-application命令即可。
提交作业
执行命令提交作业
[root@node01 flink]# bin/flink run-application -t yarn-application -c cn.ybzy.demo.WordCountDemo /root/demo-1.0-SNAPSHOT.jar
2023-06-12 23:01:00,465 INFO org.apache.hadoop.hdfs.protocol.datatransfer.sasl.SaslDataTransferClient [] - SASL encryption trust check: localHostTrusted = false, remoteHostTrusted = false
2023-06-12 23:01:00,751 INFO org.apache.hadoop.hdfs.protocol.datatransfer.sasl.SaslDataTransferClient [] - SASL encryption trust check: localHostTrusted = false, remoteHostTrusted = false
2023-06-12 23:01:00,799 INFO org.apache.hadoop.hdfs.protocol.datatransfer.sasl.SaslDataTransferClient [] - SASL encryption trust check: localHostTrusted = false, remoteHostTrusted = false
2023-06-12 23:01:00,817 INFO org.apache.flink.yarn.YarnClusterDescriptor [] - Cannot use kerberos delegation token manager, no valid kerberos credentials provided.
2023-06-12 23:01:00,821 INFO org.apache.flink.yarn.YarnClusterDescriptor [] - Submitting application master application_1686577483648_0005
2023-06-12 23:01:00,847 INFO org.apache.hadoop.yarn.client.api.impl.YarnClientImpl [] - Submitted application application_1686577483648_0005
2023-06-12 23:01:00,848 INFO org.apache.flink.yarn.YarnClusterDescriptor [] - Waiting for the cluster to be allocated
2023-06-12 23:01:00,849 INFO org.apache.flink.yarn.YarnClusterDescriptor [] - Deploying cluster, current state ACCEPTED
2023-06-12 23:01:05,123 INFO org.apache.flink.yarn.YarnClusterDescriptor [] - YARN application has been deployed successfully.
2023-06-12 23:01:05,124 INFO org.apache.flink.yarn.YarnClusterDescriptor [] - Found Web Interface node03:40762 of application 'application_1686577483648_0005'.
查看、取消作业
查看作业
[root@node01 flink]# bin/flink list -t yarn-application -Dyarn.application.id=application_1686577483648_0005
2023-06-12 23:02:55,490 INFO org.apache.flink.yarn.cli.FlinkYarnSessionCli [] - Found Yarn properties file under /tmp/.yarn-properties-root.
2023-06-12 23:02:55,490 INFO org.apache.flink.yarn.cli.FlinkYarnSessionCli [] - Found Yarn properties file under /tmp/.yarn-properties-root.
2023-06-12 23:02:55,630 WARN org.apache.flink.yarn.configuration.YarnLogConfigUtil [] - The configuration directory ('/usr/local/program/flink/conf') already contains a LOG4J config file.If you want to use logback, then please delete or rename the log configuration file.
2023-06-12 23:02:55,689 INFO org.apache.hadoop.yarn.client.RMProxy [] - Connecting to ResourceManager at node01/192.168.1.100:8032
2023-06-12 23:02:55,844 INFO org.apache.flink.yarn.YarnClusterDescriptor [] - No path for the flink jar passed. Using the location of class org.apache.flink.yarn.YarnClusterDescriptor to locate the jar
2023-06-12 23:02:55,905 INFO org.apache.flink.yarn.YarnClusterDescriptor [] - Found Web Interface node03:40762 of application 'application_1686577483648_0005'.
Waiting for response...
------------------ Running/Restarting Jobs -------------------
12.06.2023 23:01:05 : a66d8fa98d23210d36b5b005ff0a1c53 : Flink Streaming Job (RUNNING)
--------------------------------------------------------------
No scheduled jobs.
取消作业
[root@node01 flink]# bin/flink cancel -t yarn-application -Dyarn.application.id=application_1686577483648_0005 a66d8fa98d23210d36b5b005ff0a1c53
2023-06-12 23:03:49,038 INFO org.apache.flink.yarn.cli.FlinkYarnSessionCli [] - Found Yarn properties file under /tmp/.yarn-properties-root.
2023-06-12 23:03:49,038 INFO org.apache.flink.yarn.cli.FlinkYarnSessionCli [] - Found Yarn properties file under /tmp/.yarn-properties-root.
Cancelling job a66d8fa98d23210d36b5b005ff0a1c53.
2023-06-12 23:03:49,156 WARN org.apache.flink.yarn.configuration.YarnLogConfigUtil [] - The configuration directory ('/usr/local/program/flink/conf') already contains a LOG4J config file.If you want to use logback, then please delete or rename the log configuration file.
2023-06-12 23:03:49,204 INFO org.apache.hadoop.yarn.client.RMProxy [] - Connecting to ResourceManager at node01/192.168.1.100:8032
2023-06-12 23:03:49,364 INFO org.apache.flink.yarn.YarnClusterDescriptor [] - No path for the flink jar passed. Using the location of class org.apache.flink.yarn.YarnClusterDescriptor to locate the jar
2023-06-12 23:03:49,427 INFO org.apache.flink.yarn.YarnClusterDescriptor [] - Found Web Interface node03:40762 of application 'application_1686577483648_0005'.
Cancelled job a66d8fa98d23210d36b5b005ff0a1c53.
从HDFS读取提交任务
通过
yarn.provided.lib.dirs
配置选项指定位置,将flink的依赖上传到远程
将Flink本身的依赖和用户jar预先上传到HDFS,而不需要单独发送到集群,这就使得作业提交更加轻量了
上传flink的lib和plugins到HDFS上
[root@node01 flink]# hadoop fs -mkdir /flink-dist
[root@node01 flink]# hadoop fs -put lib/ /flink-dist
[root@node01 flink]# hadoop fs -put plugins/ /flink-dist
上传Flink开发程序jar包到HDFS
[root@node01 flink]# hadoop fs -mkdir /flink-jar
[root@node01 flink]# hadoop fs -put /root/demo-1.0-SNAPSHOT.jar /flink-jar
提交作业
[root@node01 flink]# bin/flink run-application -t yarn-application -Dyarn.provided.lib.dirs="hdfs://node01:9000/flink-dist" -c cn.ybzy.demo.WordCountDemo hdfs://node01:9000/flink-jar/demo-1.0-SNAPSHOT.jar
2023-06-12 23:19:20,128 INFO org.apache.flink.yarn.YarnClusterDescriptor [] - Cluster specification: ClusterSpecification{masterMemoryMB=2500, taskManagerMemoryMB=2200, slotsPerTaskManager=3}
2023-06-12 23:19:20,617 INFO org.apache.hadoop.hdfs.protocol.datatransfer.sasl.SaslDataTransferClient [] - SASL encryption trust check: localHostTrusted = false, remoteHostTrusted = false
2023-06-12 23:19:20,721 INFO org.apache.hadoop.hdfs.protocol.datatransfer.sasl.SaslDataTransferClient [] - SASL encryption trust check: localHostTrusted = false, remoteHostTrusted = false
2023-06-12 23:19:20,783 INFO org.apache.flink.yarn.YarnClusterDescriptor [] - Cannot use kerberos delegation token manager, no valid kerberos credentials provided.
2023-06-12 23:19:20,788 INFO org.apache.flink.yarn.YarnClusterDescriptor [] - Submitting application master application_1686577483648_0009
2023-06-12 23:19:20,816 INFO org.apache.hadoop.yarn.client.api.impl.YarnClientImpl [] - Submitted application application_1686577483648_0009
2023-06-12 23:19:20,816 INFO org.apache.flink.yarn.YarnClusterDescriptor [] - Waiting for the cluster to be allocated
2023-06-12 23:19:20,817 INFO org.apache.flink.yarn.YarnClusterDescriptor [] - Deploying cluster, current state ACCEPTED
2023-06-12 23:19:24,086 INFO org.apache.flink.yarn.YarnClusterDescriptor [] - YARN application has been deployed successfully.
2023-06-12 23:19:24,086 INFO org.apache.flink.yarn.YarnClusterDescriptor [] - Found Web Interface node02:43653 of application 'application_1686577483648_0009'.
Yarn模式高可用
Standalone模式中, 同时启动多个Jobmanager, 一个为leader其他为standby, 当leader挂了, 其他的才会有一个成为leader
yarn的高可用是同时只启动一个Jobmanager, 当这个Jobmanager挂了之后, yarn会再次启动一个, 其实是利用的yarn的重试次数来实现的高可用
在yarn-site.xml中配置
yarn.resourcemanager.am.max-attempts
4
The maximum number of application master execution attempts.
在flink-conf.yaml中配置
# 次数应该小于yarn-site.xml中配置重试次数
yarn.application-attempts: 3
high-availability.type: zookeeper
high-availability.storageDir: hdfs://node01:9000/flink/yarn/ha
high-availability.zookeeper.quorum: node01:2181,node02:2181,node03:2181
high-availability.zookeeper.path.root: /flink-yarn
启动yarn-session
[root@node01 flink]# bin/yarn-session.sh -nm flink-test
kill一个Jobmanager,查看复活情况
jps
kill -9 pid