Python异步框架大战:FastAPI、Sanic、Tornado vs. Go 的 Gin

2023年 9月 26日 89.8k 0

一、前言

异步编程在构建高性能 Web 应用中起着关键作用,而 FastAPI、Sanic、Tornado 都声称具有卓越的性能。本文将通过性能压测对这些框架与Go的Gin框架进行全面对比,揭示它们之间的差异。

二、环境准备

系统环境配置

编程语言

语言 版本 官网/Github
Python 3.10.12 www.python.org/
Go 1.20.5 go.dev/

压测工具

工具 介绍 官网/Github
ab Apache的压力测试工具,使用简单 httpd.apache.org/docs/2.4/pr…
wrk 高性能多线程压力测试工具 github.com/wg/wrk
JMeter 功能强大的压力/负载测试工具 github.com/apache/jmet…

这里选择 wrk 工具进行压测,mac 安装直接通过brew快速安装

brew install wrk

window安装可能要依赖它的子系统才方便安装,或者换成其他的压测工具例如JMeter。

web框架

框架 介绍 压测版本 官网/Github
FastAPI 基于Python的高性能web框架 0.103.1 fastapi.tiangolo.com/
Sanic Python的异步web服务器框架 23.6.0 sanic.dev/zh/
Tornado Python的非阻塞式web框架 6.3.3 www.tornadoweb.org/en/stable/
Gin Go语言的web框架 1.9.1 gin-gonic.com/
Fiber todo todo gofiber.io/
Flask todo todo github.com/pallets/fla…
Django todo todo www.djangoproject.com/

数据库配置

数据库名 介绍 压测版本 依赖库
MySQL 关系型数据库 8.0 sqlalchemy+aiomysql
Redis NoSQL数据库 7.2 aioredis

三、wrk 工具 http压测

FastAPI

普通http请求压测

依赖安装

pip install fastapi==0.103.1
pip install uvicorn==0.23.2

编写测试路由

from fastapi import FastAPI


app = FastAPI(summary="fastapi性能测试")


@app.get(path="/http/fastapi/test")
async def fastapi_test():
    return {"code": 0, "message": "fastapi_http_test", "data": {}}

Uvicorn 运行,这里是起四个进程运行部署

uvicorn fastapi_test:app --log-level critical --port 8000 --workers 4

wrk压测

开20个线程,建立500个连接,持续请求30s

wrk -t20 -d30s -c500 http://127.0.0.1:8000/http/fastapi/test

压测结果

➜  ~ wrk -t20 -d30s -c500 http://127.0.0.1:8000/http/fastapi/test

Running 30s test @ http://127.0.0.1:8000/http/fastapi/test
  20 threads and 500 connections
  
  Thread Stats   Avg      Stdev     Max   +/- Stdev
    Latency     3.06ms    2.89ms  36.65ms   85.34%
    Req/Sec     3.85k     3.15k   41.59k    70.05%
    
  2298746 requests in 30.11s, 383.64MB read
  Socket errors: connect 267, read 100, write 0, timeout 0
  
Requests/sec:  76357.51
Transfer/sec:     12.74MB

Thread Stats 这里是 20、30个压测线程的平均结果指标

  • 平均延迟(Avg Latency):每个线程的平均响应延迟

  • 标准差(Stdev Latency):每个线程延迟的标准差

  • 最大延迟(Max Latency):每个线程遇到的最大延迟

  • 延迟分布(+/- Stdev Latency):每个线程延迟分布情况

  • 每秒请求数(Req/Sec):每个线程每秒完成的请求数

  • 请求数分布(+/- Stdev Req/Sec):每个线程请求数的分布情况

Socket errors: connect 267, read 100, write 0, timeout 0,是压测过程中socket的错误统计

  • connect:连接错误,表示在压测过程中,总共有 267 次连接异常

  • read:读取错误,表示有 100 次读取数据异常

  • write:写入错误,表示有0次写入异常

  • timeout:超时错误,表示有0次超时

MySQL数据查询请求压测

这里在简单试下数据库查询时候的情况

首先先补充下项目依赖

pip install hui-tools[db-orm, db-redis]==0.2.0

hui-tools是我自己开发的一个工具库,欢迎大家一起来贡献。github.com/HuiDBK/py-t…

#!/usr/bin/python3
# -*- coding: utf-8 -*-
# @Author: Hui
# @Desc: { fastapi性能测试 }
# @Date: 2023/09/10 12:24
import uvicorn
from fastapi import FastAPI
from py_tools.connections.db.mysql import SQLAlchemyManager, DBManager

app = FastAPI(summary="fastapi性能测试")


async def init_orm():
    db_client = SQLAlchemyManager(
        host="127.0.0.1",
        port=3306,
        user="root",
        password="123456",
        db_name="house_rental"
    )
    db_client.init_mysql_engine()
    DBManager.init_db_client(db_client)


@app.on_event("startup")
async def startup_event():
    """项目启动时准备环境"""

    await init_orm()
    
@app.get(path="/http/fastapi/mysql/test")
async def fastapi_mysql_query_test():
    sql = "select id, username, role from user_basic where username='hui'"
    ret = await DBManager().run_sql(sql)

    column_names = [desc[0] for desc in ret.cursor.description]
    result_tuple = ret.fetchone()
    user_info = dict(zip(column_names, result_tuple))

    return {"code": 0, "message": "fastapi_http_test", "data": {**user_info}}

wrk压测

wrk -t20 -d30s -c500 http://127.0.0.1:8000/http/fastapi/mysql/test
➜  ~ wrk -t20 -d30s -c500 http://127.0.0.1:8000/http/fastapi/mysql/test

Running 30s test @ http://127.0.0.1:8000/http/fastapi/mysql/test
  20 threads and 500 connections
  
  Thread Stats   Avg      Stdev     Max   +/- Stdev
    Latency    38.81ms   19.35ms 226.42ms   76.86%
    Req/Sec   317.65    227.19   848.00     57.21%
    
  180255 requests in 30.09s, 36.95MB read
  Socket errors: connect 267, read 239, write 0, timeout 0
  Non-2xx or 3xx responses: 140
  
Requests/sec:   5989.59
Transfer/sec:      1.23MB

可以发现就加入一个简单的数据库查询,QPS从 76357.51 降到 5989.59 足足降了有10倍多,其实是单机数据库处理不过来太多请求,并发的瓶颈是在数据库,可以尝试加个redis缓存对比MySQL来说并发提升了多少。

Redis缓存查询压测

#!/usr/bin/python3
# -*- coding: utf-8 -*-
# @Author: Hui
# @Desc: { fastapi性能测试 }
# @Date: 2023/09/10 12:24
import json
from datetime import timedelta

import uvicorn
from fastapi import FastAPI
from py_tools.connections.db.mysql import SQLAlchemyManager, DBManager
from py_tools.connections.db.redis_client import RedisManager

app = FastAPI(summary="fastapi性能测试")


async def init_orm():
    db_client = SQLAlchemyManager(
        host="127.0.0.1",
        port=3306,
        user="root",
        password="123456",
        db_name="house_rental"
    )
    db_client.init_mysql_engine()
    DBManager.init_db_client(db_client)


async def init_redis():
    RedisManager.init_redis_client(
        async_client=True,
        host="127.0.0.1",
        port=6379,
        db=0,
    )


@app.on_event("startup")
async def startup_event():
    """项目启动时准备环境"""

    await init_orm()

    await init_redis()


@app.get(path="/http/fastapi/redis/{username}")
async def fastapi_redis_query_test(username: str):
    # 先判断缓存有没有
    user_info = await RedisManager.client.get(name=username)
    if user_info:
        user_info = json.loads(user_info)
        return {"code": 0, "message": "fastapi_redis_test", "data": {**user_info}}

    sql = f"select id, username, role from user_basic where username='{username}'"
    ret = await DBManager().run_sql(sql)

    column_names = [desc[0] for desc in ret.cursor.description]
    result_tuple = ret.fetchone()
    user_info = dict(zip(column_names, result_tuple))

    # 存入redis缓存中, 3min
    await RedisManager.client.set(
        name=user_info.get("username"),
        value=json.dumps(user_info),
        ex=timedelta(minutes=3)
    )

    return {"code": 0, "message": "fastapi_redis_test", "data": {**user_info}}


if __name__ == '__main__':
    uvicorn.run(app)

运行

wrk -t20 -d30s -c500 http://127.0.0.1:8000/http/fastapi/redis/hui

结果

➜  ~ wrk -t20 -d30s -c500 http://127.0.0.1:8000/http/fastapi/redis/hui

Running 30s test @ http://127.0.0.1:8000/http/fastapi/redis/hui
  20 threads and 500 connections
  
  Thread Stats   Avg      Stdev     Max   +/- Stdev
    Latency     9.60ms    5.59ms 126.63ms   88.41%
    Req/Sec     1.22k     0.91k    3.45k    57.54%
    
  730083 requests in 30.10s, 149.70MB read
  Socket errors: connect 267, read 101, write 0, timeout 0
  
Requests/sec:  24257.09
Transfer/sec:      4.97MB

缓存信息

添加了redis缓存,并发能力也提升了不少,因此在业务开发中一些查多改少的数据可以适当的做缓存。

压测结论

压测类型 测试时长 线程数 连接数 请求总数 QPS 平均延迟 最大延迟 总流量 吞吐量/s
普通请求 30s 20 500 2298746 76357.51 3.06ms 36.65ms 383.64MB 12.74MB
MySQL查询 30s 20 500 730083 5989.59 38.81ms 226.42ms 36.95MB 1.23MB
Redis缓存 30s 20 500 730083 24257.09 9.60ms 126.63ms 149.70MB 4.97MB

给 mysql 查询加了个 redis 缓存 qps 提升了 3倍多,对于一些查多改少的数据,根据业务设置适当的缓存可以大大提升系统的吞吐能力。其他框架我就直接上代码测,就不一一赘述了,直接看结果指标。

Sanic

压测方式都是一样的我就不像fastapi一样的一个一个写了,直接写全部压测然后看结果

环境安装

pip install sanic==23.6.0
pip install hui-tools'[db-orm, db-redis]'==0.2.0

编写测试路由

#!/usr/bin/python3
# -*- coding: utf-8 -*-
# @Author: Hui
# @Desc: { sanic性能测试 }
# @Date: 2023/09/10 12:24
import json
from datetime import timedelta

from py_tools.connections.db.mysql import SQLAlchemyManager, DBManager
from py_tools.connections.db.redis_client import RedisManager
from sanic import Sanic
from sanic.response import json as sanic_json

app = Sanic("sanic_test")


async def init_orm():
    db_client = SQLAlchemyManager(
        host="127.0.0.1",
        port=3306,
        user="root",
        password="123456",
        db_name="house_rental"
    )
    db_client.init_mysql_engine()
    DBManager.init_db_client(db_client)


async def init_redis():
    RedisManager.init_redis_client(
        async_client=True,
        host="127.0.0.1",
        port=6379,
        db=0,
    )


@app.listener('before_server_start')
async def server_start_event(app, loop):
    await init_orm()
    await init_redis()


@app.get(uri="/http/sanic/test")
async def fastapi_test(req):
    return sanic_json({"code": 0, "message": "sanic_http_test", "data": {}})


@app.get(uri="/http/sanic/mysql/test")
async def sanic_myql_query_test(req):
    sql = "select id, username, role from user_basic where username='hui'"
    ret = await DBManager().run_sql(sql)

    column_names = [desc[0] for desc in ret.cursor.description]
    result_tuple = ret.fetchone()
    user_info = dict(zip(column_names, result_tuple))

    return sanic_json({"code": 0, "message": "sanic_mysql_test", "data": {**user_info}})


@app.get(uri="/http/sanic/redis/")
async def sanic_redis_query_test(req, username: str):
    # 先判断缓存有没有
    user_info = await RedisManager.client.get(name=username)
    if user_info:
        user_info = json.loads(user_info)
        return sanic_json({"code": 0, "message": "sanic_redis_test", "data": {**user_info}})

    sql = f"select id, username, role from user_basic where username='{username}'"
    ret = await DBManager().run_sql(sql)

    column_names = [desc[0] for desc in ret.cursor.description]
    result_tuple = ret.fetchone()
    user_info = dict(zip(column_names, result_tuple))

    # 存入redis缓存中, 3min
    await RedisManager.client.set(
        name=user_info.get("username"),
        value=json.dumps(user_info),
        ex=timedelta(minutes=3)
    )

    return sanic_json({"code": 0, "message": "sanic_redis_test", "data": {**user_info}})


def main():
    app.run()


if __name__ == '__main__':
    # sanic sanic_test.app -p 8001 -w 4 --access-log=False
    main()

运行

Sanic 内置了一个生产web服务器,可以直接使用

sanic python.sanic_test.app -p 8001 -w 4 --access-log=False

普通http请求压测

同样是起了四个进程看看性能如何

wrk -t20 -d30s -c500 http://127.0.0.1:8001/http/sanic/test

压测结果

➜  ~ wrk -t20 -d30s -c500 http://127.0.0.1:8001/http/sanic/test

Running 30s test @ http://127.0.0.1:8001/http/sanic/test
  20 threads and 500 connections
  
  Thread Stats   Avg      Stdev     Max   +/- Stdev
    Latency     1.93ms    2.20ms  61.89ms   91.96%
    Req/Sec     6.10k     3.80k   27.08k    69.37%
    
  3651099 requests in 30.10s, 497.92MB read
  Socket errors: connect 267, read 163, write 0, timeout 0
  
Requests/sec: 121286.47
Transfer/sec:     16.54MB

Sanic 果然性能很强,在python中估计数一数二了。

mysql数据查询请求压测

运行

wrk -t20 -d30s -c500 http://127.0.0.1:8001/http/sanic/mysql/test

结果

➜  ~ wrk -t20 -d30s -c500 http://127.0.0.1:8001/http/sanic/mysql/test

Running 30s test @ http://127.0.0.1:8001/http/sanic/mysql/test
  20 threads and 500 connections
  
  Thread Stats   Avg      Stdev     Max   +/- Stdev
    Latency    35.22ms   21.75ms 264.37ms   78.52%
    Req/Sec   333.14    230.95     1.05k    68.99%
    
  198925 requests in 30.10s, 34.72MB read
  Socket errors: connect 267, read 146, write 0, timeout 0
  
Requests/sec:   6609.65
Transfer/sec:      1.15MB

Redis缓存查询压测

运行

wrk -t20 -d30s -c500 http://127.0.0.1:8001/http/sanic/redis/hui

结果

➜  ~ wrk -t20 -d30s -c500 http://127.0.0.1:8001/http/sanic/redis/hui

Running 30s test @ http://127.0.0.1:8001/http/sanic/redis/hui
  20 threads and 500 connections
  
  Thread Stats   Avg      Stdev     Max   +/- Stdev
    Latency     6.91ms    4.13ms 217.47ms   95.62%
    Req/Sec     1.71k     0.88k    4.28k    68.05%
    
  1022884 requests in 30.09s, 178.52MB read
  Socket errors: connect 267, read 163, write 0, timeout 0
  
Requests/sec:  33997.96
Transfer/sec:      5.93MB

压测结论

压测类型 测试时长 线程数 连接数 请求总数 QPS 平均延迟 最大延迟 总流量 吞吐量/s
普通请求 30s 20 500 3651099 121286.47 1.93ms 61.89ms 497.92MB 16.54MB
MySQL查询 30s 20 500 198925 6609.65 35.22ms 264.37ms 34.72MB 1.15MB
Redis缓存 30s 20 500 1022884 33997.96 6.91ms 217.47ms 178.52MB 5.93MB

Tornado

环境安装

pip install tornado==6.3.3
pip install gunicorn==21.2.0
pip install hui-tools[db-orm, db-redis]==0.2.0

编写测试路由

#!/usr/bin/python3
# -*- coding: utf-8 -*-
# @Author: Hui
# @Desc: { tornado 性能测试 }
# @Date: 2023/09/20 22:42
import asyncio
from datetime import timedelta
import json
import tornado.web
import tornado.ioloop
from tornado.httpserver import HTTPServer
from py_tools.connections.db.mysql import SQLAlchemyManager, DBManager
from py_tools.connections.db.redis_client import RedisManager

class TornadoBaseHandler(tornado.web.RequestHandler):
    pass

class TornadoTestHandler(TornadoBaseHandler):
    async def get(self):
        self.write({"code": 0, "message": "tornado_http_test", "data": {}})

class TornadoMySQLTestHandler(TornadoBaseHandler):
    async def get(self):
        sql = "select id, username, role from user_basic where username='hui'"
        ret = await DBManager().run_sql(sql)

        column_names = [desc[0] for desc in ret.cursor.description]
        result_tuple = ret.fetchone()
        user_info = dict(zip(column_names, result_tuple))
        self.write({"code": 0, "message": "tornado_mysql_test", "data": {**user_info}})

class TornadoRedisTestHandler(TornadoBaseHandler):
    async def get(self, username):
        user_info = await RedisManager.client.get(name=username)
        if user_info:
            user_info = json.loads(user_info)
            self.write(
                {"code": 0, "message": "tornado_redis_test", "data": {**user_info}}
            )
            return

        sql = f"select id, username, role from user_basic where username='{username}'"
        ret = await DBManager().run_sql(sql)

        column_names = [desc[0] for desc in ret.cursor.description]
        result_tuple = ret.fetchone()
        user_info = dict(zip(column_names, result_tuple))

        # 存入redis缓存中, 3min
        await RedisManager.client.set(
            name=user_info.get("username"),
            value=json.dumps(user_info),
            ex=timedelta(minutes=3),
        )
        self.write({"code": 0, "message": "tornado_redis_test", "data": {**user_info}})

def init_orm():
    db_client = SQLAlchemyManager(
        host="127.0.0.1",
        port=3306,
        user="root",
        password="123456",
        db_name="house_rental",
    )
    db_client.init_mysql_engine()
    DBManager.init_db_client(db_client)

def init_redis():
    RedisManager.init_redis_client(
        async_client=True,
        host="127.0.0.1",
        port=6379,
        db=0,
    )

def init_setup():
    init_orm()
    init_redis()

def make_app():
    init_setup()
    return tornado.web.Application(
        [
            (r"/http/tornado/test", TornadoTestHandler),
            (r"/http/tornado/mysql/test", TornadoMySQLTestHandler),
            (r"/http/tornado/redis/(.*)", TornadoRedisTestHandler),
        ]
    )

app = make_app()

async def main():
    # init_setup()
    # app = make_app()
    server = HTTPServer(app)
    server.bind(8002)
    # server.start(4) # start 4 worker
    # app.listen(8002)
    await asyncio.Event().wait()

if __name__ == "__main__":
    # gunicorn -k tornado -w=4 -b=127.0.0.1:8002 python.tornado_test:app
    asyncio.run(main())

运行tornado服务

gunicorn -k tornado -w=4 -b=127.0.0.1:8002 python.tornado_test:app

wrk 压测

wrk -t20 -d30s -c500 http://127.0.0.1:8002/http/tornado/test

wrk -t20 -d30s -c500 http://127.0.0.1:8002/http/tornado/mysql/test

wrk -t20 -d30s -c500 http://127.0.0.1:8002/http/tornado/redis/hui

结果

➜  ~ wrk -t20 -d30s -c500 http:// 127.0.0.1 : 8002 /http/tornado/test
Running 30s test @ http://127.0.0.1:8002/http/tornado/test
  20 threads and 500 connections
  
  Thread Stats   Avg      Stdev     Max   +/- Stdev
    Latency     6.54ms    1.92ms  34.75ms   63.85%
    Req/Sec     1.79k     1.07k    3.83k    56.23%
    
  1068205 requests in 30.07s, 280.15MB read
  Socket errors: connect 267, read 98, write 0, timeout 0
  
Requests/sec:  35525.38
Transfer/sec:      9.32MB

➜  ~ wrk -t20 -d30s -c500 http:// 127.0.0.1 : 8002 /http/tornado/mysql/test
Running 30s test @ http://127.0.0.1:8002/http/tornado/mysql/test
  20 threads and 500 connections
  
  Thread Stats   Avg      Stdev     Max   +/- Stdev
    Latency    41.29ms   16.51ms 250.81ms   71.45%
    Req/Sec   283.47    188.81     0.95k    65.31%
    
  169471 requests in 30.09s, 51.88MB read
  Socket errors: connect 267, read 105, write 0, timeout 0
  
Requests/sec:   5631.76
Transfer/sec:      1.72MB

➜  ~ wrk -t20 -d30s -c500 http:// 127.0.0.1 : 8002 /http/tornado/redis/hui
Running 30s test @ http://127.0.0.1:8002/http/tornado/redis/hui
  20 threads and 500 connections
  
  Thread Stats   Avg      Stdev     Max   +/- Stdev
    Latency    11.69ms    3.83ms 125.75ms   78.27%
    Req/Sec     1.00k   537.85     2.20k    64.34%
    
  599840 requests in 30.07s, 183.63MB read
  Socket errors: connect 267, read 97, write 0, timeout 0
  Non-2xx or 3xx responses: 2
  
Requests/sec:  19947.28
Transfer/sec:      6.11MB

Gin

环境安装

go get "github.com/gin-gonic/gin"
go get "github.com/go-redis/redis"
go get "gorm.io/driver/mysql"
go get "gorm.io/gorm"

代码编写

package main

import (
    "encoding/json"
    "time"

    "github.com/gin-gonic/gin"
    "github.com/go-redis/redis"
    "gorm.io/driver/mysql"
    "gorm.io/gorm"
    "gorm.io/gorm/logger"
)

var (
    db          *gorm.DB
    redisClient *redis.Client
)

type UserBasic struct {
    Id       int    `json:"id"`
    Username string `json:"username"`
    Role     string `json:"role"`
}

func (UserBasic) TableName() string {
    return "user_basic"
}

func initDB() *gorm.DB {
    var err error
    db, err = gorm.Open(mysql.Open("root:123456@/house_rental"), &gorm.Config{
        // 将LogMode设置为logger.Silent以禁用日志打印
        Logger: logger.Default.LogMode(logger.Silent),
    })
    if err != nil {
        panic("failed to connect database")
    }

    sqlDB, err := db.DB()

    // SetMaxIdleConns sets the maximum number of connections in the idle connection pool.
    sqlDB.SetMaxIdleConns(10)

    // SetMaxOpenConns sets the maximum number of open connections to the database.
    sqlDB.SetMaxOpenConns(30)

    // SetConnMaxLifetime sets the maximum amount of time a connection may be reused.
    sqlDB.SetConnMaxLifetime(time.Hour)

    return db
}

func initRedis() *redis.Client {
    redisClient = redis.NewClient(&redis.Options{
        Addr: "localhost:6379",
    })
    return redisClient
}

func jsonTestHandler(c *gin.Context) {
    c.JSON(200, gin.H{
        "code": 0, "message": "gin json", "data": make(map[string]any),
    })
}

func mysqlQueryHandler(c *gin.Context) {

    // 查询语句
    var user UserBasic
    db.First(&user, "username = ?", "hui")
    //fmt.Println(user)

    // 返回响应
    c.JSON(200, gin.H{
        "code":    0,
        "message": "go mysql test",
        "data":    user,
    })

}

func cacheQueryHandler(c *gin.Context) {
    // 从Redis中获取缓存
    username := "hui" // 要查询的用户名
    cachedUser, err := redisClient.Get(username).Result()
    if err == nil {
        // 缓存存在,将缓存结果返回给客户端
        var user UserBasic
        _ = json.Unmarshal([]byte(cachedUser), &user)
        c.JSON(200, gin.H{
            "code":    0,
            "message": "gin redis test",
            "data":    user,
        })
        return
    }

    // 缓存不存在,执行数据库查询
    var user UserBasic
    db.First(&user, "username = ?", username)

    // 将查询结果保存到Redis缓存
    userJSON, _ := json.Marshal(user)
    redisClient.Set(username, userJSON, time.Minute*2)

    // 返回响应
    c.JSON(200, gin.H{
        "code":    0,
        "message": "gin redis test",
        "data":    user,
    })
}

func initDao() {
    initDB()
    initRedis()
}

func main() {
    //r := gin.Default()
    r := gin.New()
    gin.SetMode(gin.ReleaseMode) // 生产模式

    initDao()

    r.GET("/http/gin/test", jsonTestHandler)

    r.GET("/http/gin/mysql/test", mysqlQueryHandler)

    r.GET("/http/gin/redis/test", cacheQueryHandler)

    r.Run("127.0.0.1:8003")
}

wrk 压测

wrk -t20 -d30s -c500 http: //127.0.0.1:8003/http/gin/test

wrk -t20 -d30s -c500 http: //127.0.0.1:8003/http/gin/mysql/test

wrk -t20 -d30s -c500 http: //127.0.0.1:8003/http/gin/redis/test

结果

➜  ~ wrk -t20 -d30s -c500 http:// 127.0.0.1 : 8003 /http/gin/test
Running 30s test @ http://127.0.0.1:8003/http/gin/test
  20 threads and 500 connections
  
  Thread Stats   Avg      Stdev     Max   +/- Stdev
    Latency     2.45ms    5.68ms 186.48ms   91.70%
    Req/Sec     6.36k     5.62k   53.15k    83.99%
    
  3787808 requests in 30.10s, 592.42MB read
  Socket errors: connect 267, read 95, write 0, timeout 0
  
Requests/sec: 125855.41
Transfer/sec:     19.68MB

➜  ~ wrk -t20 -d30s -c500 http:// 127.0.0.1 : 8003 /http/gin/mysql/test
Running 30s test @ http://127.0.0.1:8003/http/gin/mysql/test
  20 threads and 500 connections
  
  Thread Stats   Avg      Stdev     Max   +/- Stdev
    Latency    40.89ms   83.70ms   1.12s    90.99%
    Req/Sec   522.33    322.88     1.72k    64.84%
    
  308836 requests in 30.10s, 61.26MB read
  Socket errors: connect 267, read 100, write 0, timeout 0
  
Requests/sec:  10260.63
Transfer/sec:      2.04MB
➜  ~

➜  ~ wrk -t20 -d30s -c500 http:// 127.0.0.1 : 8003 /http/gin/redis/test
Running 30s test @ http://127.0.0.1:8003/http/gin/redis/test
  20 threads and 500 connections
  
  Thread Stats   Avg      Stdev     Max   +/- Stdev
    Latency     7.18ms    1.76ms  79.40ms   81.93%
    Req/Sec     1.63k     1.09k    4.34k    62.59%
    
  972272 requests in 30.10s, 193.79MB read
  Socket errors: connect 267, read 104, write 0, timeout 0
  
Requests/sec:  32305.30
Transfer/sec:      6.44MB

四、总结

web框架 压测类型 测试时长 线程数 连接数 请求总数 QPS 平均延迟 最大延迟 总流量 吞吐量/s
FastAPI 普通请求 30s 20 500 2298746(229w) 76357.51(76k) 3.06ms 36.65ms 383.64MB 12.74MB
MySQL查询 30s 20 500 180255(18w) 5989.59(5.9k) 38.81ms 226.42ms 36.95MB 1.23MB
Redis缓存 30s 20 500 730083(73w) 24257.09(24k) 9.60ms 126.63ms 149.70MB 4.97MB
Sanic 普通请求 30s 20 500 3651099(365w) 121286.47(120k) 1.93ms 61.89ms 497.92MB 16.54MB
MySQL查询 30s 20 500 198925(19w) 6609.65(6k) 35.22ms 264.37ms 34.72MB 1.15MB
Redis缓存 30s 20 500 1022884(100w) 33997.96(33k) 6.91ms 217.47ms 178.52MB 5.93MB
Tornado 普通请求 30s 20 500 1068205(106w) 35525.38(35k) 6.54ms 34.75ms 280.15MB 9.32MB
MySQL查询 30s 20 500 169471(16w) 5631.76(5.6k) 41.29ms 250.81ms 51.88MB 1.72MB
Redis缓存 30s 20 500 599840(59w) 19947.28(19k) 11.69ms 125.75ms 183.63MB 6.11MB
Gin 普通请求 30s 20 500 3787808(378w) 125855.41(125k) 2.45ms 186.48ms 592.42MB 19.68MB
MySQL查询 30s 20 500 308836(30w) 10260.63(10k) 40.89ms 1.12s 61.26MB 2.04MB
Redis缓存 30s 20 500 972272(97w) 32305.30(32k) 7.18ms 79.40ms 193.79MB 6.44MB

性能

从性能角度来看,各个Web框架的表现如下:

Gin > Sanic > FastAPI > Tornado

Gin:在普通请求方面表现最佳,具有最高的QPS和吞吐量。在MySQL查询中,性能很高,但最大延迟也相对较高。gin承受的并发请求最高有 1w qps,其他python框架都在5-6k qps,但gin的mysql查询请求最大延迟达到了1.12s, 虽然可以接受这么多并发请求,但单机mysql还是处理不过来。

还有非常重要的一点,cpython的多线程由于GIL原因不能充分利用多核CPU,故而都是通过开了四个进程来处理请求,资源开销远远大于go的gin,go底层的GMP的调度策略很强,天然支持并发。

注意:Python使用asyncio语法时切记不要使用同步IO操作不然会堵塞住主线程的事件loop,从而大大降低性能,如果没有异步库支持可以采用线程来处理同步IO。

综合评价

除了性能之外,还有其他因素需要考虑,例如框架的社区活跃性、生态系统、文档质量以及团队熟悉度等。这些因素也应该在选择Web框架时考虑。

最终的选择应该基于具体需求和项目要求。如果性能是最重要的因素之一,那么Sanic和go的一些框架可能是不错的选择。如果您更关注其他方面的因素,可以考虑框架的社区支持和适用性。我个人还是挺喜欢使用FastAPI。

五、测试源代码

github.com/HuiDBK/WebF…

Github上已经有其他语言的web框架的压测,感兴趣也可以去了解下: web-frameworks-benchmark.netlify.app/result

不知道为啥他们测试的python性能好低,可能异步没用对😄

相关文章

JavaScript2024新功能:Object.groupBy、正则表达式v标志
PHP trim 函数对多字节字符的使用和限制
新函数 json_validate() 、randomizer 类扩展…20 个PHP 8.3 新特性全面解析
使用HTMX为WordPress增效:如何在不使用复杂框架的情况下增强平台功能
为React 19做准备:WordPress 6.6用户指南
如何删除WordPress中的所有评论

发布评论