这个交互式 jupyter notebook 将使用官方 Elasticsearch Python 客户端向你介绍 Elasticsearch 的一些基本操作。 你将使用 Sentence Transformers 进行文本嵌入的语义搜索。 了解如何将传统的基于文本的搜索与语义搜索集成,形成混合搜索系统。在本示例中,我们将使用模型自带的功能对文本进行向量化,而不借助 Elasticsearch 所提供的 ingest pipeline 来进行矢量化。这样的好处是完全免费,不需要购买版权。如果你想使用 ingest pipeline 来进行向量化,请参阅文章 ”Elasticsearch:使用 huggingface 模型的 NLP 文本搜索“。
安装
Elasticsearch 及 Kibana
如果你还没有安装好自己的 Elasticsearch 及 Kibana,请参考如下的链接来进行安装:
-
如何在 Linux,MacOS 及 Windows 上进行安装 Elasticsearch
-
Kibana:如何在 Linux,MacOS 及 Windows 上安装 Elastic 栈中的 Kibana
在安装的时候,我们可以选择 Elastic Stack 8.x 的安装指南来进行安装。在本博文中,我将使用最新的 Elastic Stack 8.10 来进行展示。
在安装 Elasticsearch 的过程中,我们需要记下如下的信息:
Python 安装包
在本演示中,我们将使用 Python 来进行展示。我们需要安装访问 Elasticsearch 相应的安装包 elasticsearch:
python3 -m pip install -qU sentence-transformers elasticsearch transformers
我们将使用 Jupyter Notebook 来进行展示。
1. $ pwd
2. /Users/liuxg/python/elser
3. $ jupyter notebook
创建应用并展示
设置嵌入模型
在此示例中,我们使用 all-MiniLM-L6-v2,它是 sentence_transformers 库的一部分。 你可以在 Huggingface 上阅读有关此模型的更多信息。
1. from sentence_transformers import SentenceTransformer
2. import torch
4. device = 'cuda' if torch.cuda.is_available() else 'cpu'
6. model = SentenceTransformer('all-MiniLM-L6-v2', device=device)
7. model
初始化 Elasticsearch 客户端
现在我们可以实例化 Elasticsearch python 客户端。我们必须提高响应的账号及证书信息:
1. from elasticsearch import Elasticsearch
3. ELASTCSEARCH_CERT_PATH = "/Users/liuxg/elastic/elasticsearch-8.10.0/config/certs/http_ca.crt"
5. client = Elasticsearch( ['https://localhost:9200'],
6. basic_auth = ('elastic', 'vXDWYtL*my3vnKY9zCfL'),
7. ca_certs = ELASTCSEARCH_CERT_PATH,
8. verify_certs = True)
9. print(client.info())
摄入一些数据
我们的客户端已设置并连接到我们的 Elasticsearch 部署。 现在我们需要一些数据来测试 Elasticsearch 查询的基础知识。 我们将使用包含以下字段的小型书籍索引:
title
authors
publish_date
num_reviews
publisher
我们在当前项目的根目录下创建 books.json 文件:
books.json
1. [2. {3. "title": "The Pragmatic Programmer: Your Journey to Mastery",4. "authors": ["andrew hunt", "david thomas"],
5. "summary": "A guide to pragmatic programming for software engineers and developers",
6. "publish_date": "2019-10-29",
7. "num_reviews": 30,
8. "publisher": "addison-wesley"
9. },
10. {
11. "title": "Python Crash Course",
12. "authors": ["eric matthes"],
13. "summary": "A fast-paced, no-nonsense guide to programming in Python",
14. "publish_date": "2019-05-03",
15. "num_reviews": 42,
16. "publisher": "no starch press"
17. },
18. {
19. "title": "Artificial Intelligence: A Modern Approach",
20. "authors": ["stuart russell", "peter norvig"],
21. "summary": "Comprehensive introduction to the theory and practice of artificial intelligence",
22. "publish_date": "2020-04-06",
23. "num_reviews": 39,
24. "publisher": "pearson"
25. },
26. {
27. "title": "Clean Code: A Handbook of Agile Software Craftsmanship",
28. "authors": ["robert c. martin"],
29. "summary": "A guide to writing code that is easy to read, understand and maintain",
30. "publish_date": "2008-08-11",
31. "num_reviews": 55,
32. "publisher": "prentice hall"
33. },
34. {
35. "title": "You Don't Know JS: Up & Going",
36. "authors": ["kyle simpson"],
37. "summary": "Introduction to JavaScript and programming as a whole",
38. "publish_date": "2015-03-27",
39. "num_reviews": 36,
40. "publisher": "oreilly"
41. },
42. {
43. "title": "Eloquent JavaScript",
44. "authors": ["marijn haverbeke"],
45. "summary": "A modern introduction to programming",
46. "publish_date": "2018-12-04",
47. "num_reviews": 38,
48. "publisher": "no starch press"
49. },
50. {
51. "title": "Design Patterns: Elements of Reusable Object-Oriented Software",
52. "authors": [
53. "erich gamma",
54. "richard helm",
55. "ralph johnson",
56. "john vlissides"
57. ],
58. "summary": "Guide to design patterns that can be used in any object-oriented language",
59. "publish_date": "1994-10-31",
60. "num_reviews": 45,
61. "publisher": "addison-wesley"
62. },
63. {
64. "title": "The Clean Coder: A Code of Conduct for Professional Programmers",
65. "authors": ["robert c. martin"],
66. "summary": "A guide to professional conduct in the field of software engineering",
67. "publish_date": "2011-05-13",
68. "num_reviews": 20,
69. "publisher": "prentice hall"
70. },
71. {
72. "title": "JavaScript: The Good Parts",
73. "authors": ["douglas crockford"],
74. "summary": "A deep dive into the parts of JavaScript that are essential to writing maintainable code",
75. "publish_date": "2008-05-15",
76. "num_reviews": 51,
77. "publisher": "oreilly"
78. },
79. {
80. "title": "Introduction to the Theory of Computation",
81. "authors": ["michael sipser"],
82. "summary": "Introduction to the theory of computation and complexity theory",
83. "publish_date": "2012-06-27",
84. "num_reviews": 33,
85. "publisher": "cengage learning"
86. }
87. ]
1. $ pwd
2. /Users/liuxg/python/elser
3. $ ls
4. Multilingual semantic search.ipynb
5. NLP text search using hugging face transformer model.ipynb
6. Semantic search - ELSER.ipynb
7. Semantic search quick start.ipynb
8. books.json
9. data.json
创建索引
让我们使用测试数据的正确映射创建一个 Elasticsearch 索引。
1. INDEX_NAME = "book_index"
3. if es.indices.exists(index=INDEX_NAME):
4. print("Deleting existing %s" % INDEX_NAME)
5. client.options(ignore_status=[400, 404]).indices.delete(index=INDEX_NAME)
7. # Define the mapping
8. mappings = {
9. "properties": {
10. "title_vector": {
11. "type": "dense_vector",
12. "dims": 384,
13. "index": "true",
14. "similarity": "cosine"
15. }
16. }
17. }
20. # Create the index
21. client.indices.create(index = INDEX_NAME, mappings = mappings)
索引测试数据
运行以下命令上传一些测试数据,其中包含该数据集中的 10 本流行编程书籍的信息。 model.encode 将使用我们之前初始化的模型将文本动态编码为向量。
1. import json
3. # Load data into a JSON object
4. with open('books.json') as f:
5. data_json = json.load(f)
7. print(data_json)
9. actions = []
10. for book in data_json:
11. actions.append({"index": {"_index": INDEX_NAME}})
12. # Transforming the title into an embedding using the model
13. book["title_vector"] = model.encode(book["title"]).tolist()
14. actions.append(book)
15. client.bulk(index=INDEX_NAME, operations=actions)
我们可以在 Kibana 中进行查看:
GET book_index/_search
漂亮地打印 Elasticsearch 响应
你的 API 调用将返回难以阅读的嵌套 JSON。 我们将创建一个名为 Pretty_response 的小函数,以从示例中返回漂亮的、人类可读的输出。
1. def pretty_response(response):
2. for hit in response['hits']['hits']:
3. id = hit['_id']
4. publication_date = hit['_source']['publish_date']
5. score = hit['_score']
6. title = hit['_source']['title']
7. summary = hit['_source']['summary']
8. publisher = hit["_source"]["publisher"]
9. num_reviews = hit["_source"]["num_reviews"]
10. authors = hit["_source"]["authors"]
11. pretty_output = (f"nID: {id}nPublication date: {publication_date}nTitle: {title}nSummary: {summary}nPublisher: {publisher}nReviews: {num_reviews}nAuthors: {authors}nScore: {score}")
12. print(pretty_output)
查询
现在我们已经对书籍进行了索引,我们想要对与给定查询相似的书籍执行语义搜索。 我们嵌入查询并执行搜索。
1. response = client.search(index="book_index", body={
2. "knn": {
3. "field": "title_vector",
4. "query_vector": model.encode("Best javascript books?"),
5. "k": 10,
6. "num_candidates": 100
7. }
8. })
10. pretty_response(response)
过滤
过滤器上下文主要用于过滤结构化数据。 例如,使用过滤器上下文来回答以下问题:
- 该时间戳是否在 2015 年至 2016 年范围内?
- 状态字段是否设置为 “published”?
每当查询子句传递给过滤器参数(例如布尔查询中的 filter 或 must_not 参数)时,过滤器上下文就会生效。
在 Elasticsearch 文档中了解有关过滤器上下文的更多信息。
示例:关键字过滤
这是向查询添加关键字过滤器的示例。
它通过仅包含 “publisher” 字段等于 “addison-wesley” 的文档来缩小结果范围。
该代码检索类似于 “Best javascript books?” 的热门书籍。 基于他们的 title 向量,并以 “addison-wesley” 作为出版商。
1. response = client.search(index=INDEX_NAME, body={
2. "knn": {
3. "field": "title_vector",
4. "query_vector": model.encode("Best javascript books?"),
5. "k": 10,
6. "num_candidates": 100,
7. "filter": {
8. "term": {
9. "publisher.keyword": "addison-wesley"
10. }
11. }
12. }
13. })
15. pretty_response(response)
示例:高级过滤
Elasticsearch 中的高级过滤允许通过应用条件来精确细化搜索结果。 它支持多种运算符,可用于根据特定字段、范围或条件过滤结果,从而提高搜索结果的精度和相关性。 在此查询和过滤上下文示例中了解更多信息。
1. response = client.search(index="book_index", body={
2. "knn": {
3. "field": "title_vector",
4. "query_vector": model.encode("Best javascript books?"),
5. "k": 10,
6. "num_candidates": 100,
7. "filter": {
8. "bool": {
9. "should": [
10. {
11. "term": {
12. "publisher.keyword": "addison-wesley"
13. }
14. },
15. {
16. "term": {
17. "authors.keyword": "robert c. martin"
18. }
19. }
20. ],
22. }
23. }
24. }
25. })
27. pretty_response(response)
Hybrid search
在此示例中,我们正在研究两种搜索算法的组合:用于文本搜索的 BM25 和用于最近邻搜索的 HNSW。 通过结合多种排名方法,例如 BM25 和生成密集向量嵌入的 ML 模型,我们可以获得最佳排名结果。 这种方法使我们能够利用每种算法的优势并提高整体搜索性能。
倒数排名融合 (RRF) 是一种最先进的排名算法,用于组合来自不同信息检索策略的结果。 RRF 在未经校准的情况下优于所有其他排名算法。 简而言之,它支持开箱即用的一流混合搜索。
1. response = client.search(index="book_index", body={
2. "query": {
3. "match": {
4. "summary": "python"
5. }
6. },
7. "knn": {
8. "field": "title_vector",
9. # generate embedding for query so it can be compared to `title_vector`
10. "query_vector" : model.encode("python programming").tolist(),
11. "k": 5,
12. "num_candidates": 10
13. },
14. "rank": {
15. "rrf": {
16. "window_size": 100,
17. "rank_constant": 20
18. }
19. }
20. })
22. pretty_response(response)
最终的 jupyter 文件可以在地址下载。