使用eBPF加速阿里云服务网格ASM

2023年 10月 13日 41.8k 0

背景

随着云原生应用架构的快速发展,微服务架构已经成为了构建现代应用的主要方式之一。而在微服务架构中,服务间的通信变得至关重要。为了实现弹性和可伸缩性,许多组织开始采用服务网格技术来管理服务之间的通信。

Istio作为目前最受欢迎的服务网格之一,提供了一套强大的功能,以简化服务网格的管理和操作。它通过引入一组专门的代理(即Sidecar)来实现在服务之间进行流量管理、监控和安全控制等功能。

在Istio中,Sidecar是一种特殊的代理,它与每个服务实例一起部署,并负责处理该实例与其他服务之间的通信。它位于服务容器内部,与应用程序实例一同运行,并通过拦截和转发网络流量来提供服务网格的功能。

然而,正因为Sidecar与每个服务实例一同运行,它也可能引入一些潜在的性能问题,其中一个主要问题就是延迟。

由于每个服务实例都需要与其对应的Sidecar进行通信,这增加了请求路径的长度和网络延迟。此外,Sidecar还要负责执行各种功能,如流量管理、监控和安全控制等,这也会对性能产生一定的影响。

image

针对Sidecar引入的延迟问题,业内常用采用eBPF sockops 技术来优化,在同一个节点下,短路两个进程间的socket 通信,也就是让tcp 报文不用经过TCP/IP 协议栈。 加速后的流量路径示意图如下:

image

阿里云服务网格最近上线了sidecar 加速组件, 接下来我们来测试验证下,特别是对比其开启前后实际的加速效果。

安装部署和环境介绍

环境准备

首先,按照文档,创建一个ASM 实例,笔者采用当前ASM 最新版本v1.18 企业版

然后,创建一个ACK 集群,ASM sidecar 加速组件仅支持ACK 托管版本和ACK 专有版本集群。笔者创建了一个ACK托管版本实例 ,版本使用v1.26, 集群包含3节点,节点操作系统镜像使用了文档推荐的Alibaba Cloud Linux3。并把ACK 添加到ASM 实例下。

环境信息如下:

  • ✅ASM 实例

image

  • ✅ACK 集群

image

网络CNI 插件选用了terway

image

部署测试例子

这里采用了从istio 官方的benchmark 工具下抽离出的简化版压测程序。

---
apiVersion: v1
kind: Service
metadata:
  name: fortioserver
spec:
  ports:
  - name: http-echo
    port: 8080
    protocol: TCP
  - name: tcp-echoa
    port: 8078
    protocol: TCP
  - name: grpc-ping
    port: 8079
    protocol: TCP
  selector:
    app: fortioserver
  type: ClusterIP
---
apiVersion: apps/v1
kind: Deployment
metadata:
  labels:
    app: fortioserver
  name: fortioserver
spec:
  selector:
    matchLabels:
      app: fortioserver
  template:
    metadata:
      labels:
        app: fortioserver
      annotations:
        sidecar.istio.io/proxyCPULimit: 2000m
        proxy.istio.io/config: |
          concurrency: 2
    spec:
      containers:
      - name: captured
        image: fortio/fortio:latest_release
        ports:
        - containerPort: 8080
          protocol: TCP
        - containerPort: 8078
          protocol: TCP
        - containerPort: 8079
          protocol: TCP
---
apiVersion: v1
kind: Service
metadata:
  annotations:
      service.beta.kubernetes.io/alibaba-cloud-loadbalancer-health-check-switch: "off"
  name: fortioclient
spec:
  ports:
  - name: http-report
    port: 8080
    protocol: TCP
  selector:
    app: fortioclient
  type: LoadBalancer
---
apiVersion: apps/v1
kind: Deployment
metadata:
  labels:
    app: fortioclient
  name: fortioclient
spec:
  selector:
    matchLabels:
      app: fortioclient
  template:
    metadata:
      annotations:
        sidecar.istio.io/proxyCPULimit: 4000m
        proxy.istio.io/config: |
           concurrency: 4
      labels:
        app: fortioclient
    spec:
      affinity:
        podAffinity:
          requiredDuringSchedulingIgnoredDuringExecution:
          - labelSelector:
              matchExpressions:
              - key: app
                operator: In
                values:
                - fortioserver
            topologyKey: "kubernetes.io/hostname"
      containers:
      - name: captured
        volumeMounts:
        - name: shared-data
          mountPath: /var/lib/fortio
        image: fortio/fortio:latest_release
        args:
        - report
        ports:
        - containerPort: 8080
          protocol: TCP
      volumes:
      - name: shared-data
        emptyDir: {}

根据Sidecar Acceleration 组件文档提示,组件开启不能加速已有存量TCP 连接,因此,笔者通过DestinationRule 配置了 客户端侧的相关连接池配置,通过设置连接的空闲时间30s 来保证前后多轮测试,连接总是新建的。(前后两轮测试间隔30s 以上即可)

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
  name: fortioserver
spec:
  host: fortioserver.default.svc.cluster.local
  trafficPolicy:
    connectionPool:
      tcp:
        maxConnections: 100
      http:
        idleTimeout: 30s

拷贝如上yaml ,kubectl apply 即可。注意部署前已将default namespace 开启了sidecar自动注入。

压测模型: 很简单就是 fortioclient -> fortioserver , 注入sidecar 后,压测流量路径变为:

[ fortioclient -> sidecar ] -> [ sidecar -> fortioserver ]

Yaml 配置简单说明如下:

1) 考虑到envoy 路由和负载均衡能力大部分功能由 outbound sidecar 起作用,上述配置特意调大了 outbound sidecar 的CPU ,设置其CPU limit为4000m, concurrency 对应调整为4 (性能最优),避免压测客户端成为瓶颈。

  •   为了测试多阶段都能加速的效果,特意通过pod 亲和性将fortioclient 和 fortioserver 调度到同一个节点。
  • 3)每一轮的压测结果可以通过fortioclient 的 8080 端口访问进行查看。

    压测方法:

    1)  http 请求性能压测

    kubectl exec deployment/fortioclient -c captured -- fortio load -c 64 -qps 14000 -t 30s -a -r 0.00005 -httpbufferkb=64 -labels http-after-install-acceleration-perf-test-1 http://fortioserver:8080/echo?size=1024
    

    2) tcp 请求性能压测

    kubectl exec deployment/fortioclient -c captured -- fortio load -c 64 -qps  0 -t 30s -a -r 0.00005  -labels tcp-after-install-acceleration-perf-test-1 tcp://fortioserver:8078
    

    其中labels 是对应这一轮压测的名称,可用于区别多轮压测结果。

    qps 需要根据实际压测场景进行调整。设置为0 表示无上限。设置为非零表示采用固定QPS 进行压测。

    fortio 相关参数含义可以参考官方链接文档: github.com/fortio/fort…

    性能测试

    为了避免压测时相关干扰信息,可以将日志暂时关闭。在ASM 控制台的可观测配置下操作关闭即可。

    image

    首先进行一轮环境的QPS 上限测试。对比开启前后的QPS 是否有提升。

    压测相关参数设置:

    • 64 并发
    • QPS 不设上限
    • 持续压测30s
    • http payload 1024 (1KB) size
    kubectl exec deployment/fortioclient -c captured -- fortio load -c 64 -qps 0 -t 30s -a -r 0.00005 -httpbufferkb=64 -labels http-after-install-acceleration-perf-test-1 http://fortioserver:8080/echo?size=1024
    

    压测结果:

    image

    也可以通过fortioclient 的loadbalancer ip 访问查看相关直方图,可以看到大部分请求的latency 分布情况。

    image

    测试开启 Sidecar Acceleration加速组件后效果:

    image

    在ACK 控制台的组件管理菜单下找到加速组件,点击安装;

    安装提示成功后,再次使用同样的压测命令进行压测:

    kubectl exec deployment/fortioclient -c captured -- fortio load -c 64 -qps 0 -t 30s -a -r 0.00005 -httpbufferkb=64 -labels http-after-install-acceleration-perf-test-1 http://fortioserver:8080/echo?size=1024
    

    压测结果:

    image

    开启前后对比:

    从QPS 角度来看,13521 / 11461.0 = 1.179739987784661, 18% 左右的QPS 提升。

    Latency 角度来看: 4.732/5.583 = 0.8475729894322049, 平均 AVG latency 降低16% 左右。

    我们可以通过fortio UI 提供的直方图可以直观地看出,加速组件开启后,延迟更低,大部分请求在低延时区域。 未开启加速组件之前的请求,对比有超出一部分请求在较高的延时区域。

    image

    笔者进行了多轮压测,排除了相关环境抖动因素。

    image

    调整并发进行多轮压测,QPS 基本提升都能保证在15% 左右。

    然后,再次进行了一组TCP 的压测对比

    压测相关参数配置:

    • 64 并发
    • 1024 payload
    • 持续压测30s

    开启前:

    执行如下命令进行压测;

    kubectl exec deployment/fortioclient -c captured -- fortio load -c 64 -qps  0 -t 30s -a -r 0.00005 --payload-size 1024  -labels tcp-not-install-acceleration-perf-test-1 tcp://fortioserver:8078
    

    image

    进行多轮压力测试,多轮压测差异不大,排除干扰信息。

    image

    开启后:

    执行如下命令:

    kubectl exec deployment/fortioclient -c captured -- fortio load -c 64 -qps  0 -t 30s -a -r 0.00005 --payload-size 1024  -labels tcp-after-install-acceleration-perf-test-1 tcp://fortioserver:8078
    

    image

    开启前后直方图对比:

    image

    QPS 前后对比:

    85665/54564.9 = 1.5699653073679234 , 50%多的QPS 提升,这是因为对于TCP 来说,sidecar/envoy 仅做tcp 负载均衡纯转发,不用做HTTP报文解析。

    因此,在这种场景下,报文通过TCP/IP 协议栈所占用的时间比重相对较高。我们通过Latency 对比也可以看出。

    Latency 前后对比:

    0.746 ms / 1.172.ms = 0.636 ,接近40% 的latency 降低。

    总结

    服务网格下的Sidecar 代理业务服务的收发请求,并提供业务层面的流量控制(路由)、负载均衡等功能,会引入一定的Latency 延迟。 通过eBPF 技术(部署sidecar 加速组件)将同节点下两个进程间的TCP 报文进行socket 短路可以提升一定的性能,HTTP 场景下QPS 可提升15% 左右, 有效地降低业务请求的Latency 。

    实际业务场景下,对于Latency 敏感型的业务,我们可以通过pod 亲和性将上下游的依赖服务部署在同一个节点,采用Sidecar Acceleration Using eBPF 组件来保证服务更低的Latency 和 更高的QPS 。

    相关文章

    KubeSphere 部署向量数据库 Milvus 实战指南
    探索 Kubernetes 持久化存储之 Longhorn 初窥门径
    征服 Docker 镜像访问限制!KubeSphere v3.4.1 成功部署全攻略
    那些年在 Terraform 上吃到的糖和踩过的坑
    无需 Kubernetes 测试 Kubernetes 网络实现
    Kubernetes v1.31 中的移除和主要变更

    发布评论