如何在Python中进行数据预处理和特征工程
如何在Python中进行数据预处理和特征工程
数据预处理和特征工程是数据科学领域中非常重要的一部分。数据预处理是指对原始数据进行清洗、转换和整理,以便进一步分析和建模。而特征工程则是指从原始数据中提取有用的特征,以帮助机器学习算法更好地理解数据并提高模型性能。本文将介绍在Python中进行数据预处理和特征工程的常用技术和相关代码示例。
首先,我们需要将数据加载到Python环境中。常见的数据格式包括CSV、Excel、SQL数据库等。下面是一种常用的方法,使用pandas库加载CSV格式的数据:
import pandas as pd 1. 读取CSV文件 data = pd.read_csv('data.csv')登录后复制