Apache Flink 是一个开源的流处理框架,它提供高效、准确、容错的数据流处理机制。在 Flink 中,可以通过将数据流写入 MySQL 数据库来进行数据存储和分析。但是,Flink 写入 MySQL 数据库时的并行度可能会受到一些限制,从而影响程序的性能。因此,本文将介绍如何提高 Flink 写入 MySQL 的并行度。
1. 配置 MySQL 的最大连接数
mysql>set global max_connections = 1000;
mysql>set @@global.max_connections = 1000;
2. 配置 Flink 的并行度
env.setParallelism(4);
3. 使用批量写入方式
output.addSink(JdbcSink.>sink(
"INSERT INTO tablename (name,score) values (?,?)",
new JdbcStatementBuilder>() {
@Override
public void accept(PreparedStatement preparedStatement, Tuple2t) throws SQLException {
preparedStatement.setString(1, t.f0); // name
preparedStatement.setInt(2, t.f1); // score
}
},
new JdbcConnectionOptions.JdbcConnectionOptionsBuilder()
.withUrl("jdbc:mysql://localhost:3306/dbname")
.withDriverName("com.mysql.jdbc.Driver")
.withUsername("root")
.withPassword("password")
.build()));
4. 使用 Upsert 方式
output.addSink(JdbcSink.>sink(
"INSERT INTO tablename (name,score) values (?,?) ON DUPLICATE KEY UPDATE score = VALUES(score)",
new JdbcStatementBuilder>() {
@Override
public void accept(PreparedStatement preparedStatement, Tuple2t) throws SQLException {
preparedStatement.setString(1, t.f0); // name
preparedStatement.setInt(2, t.f1); // score
}
},
new JdbcConnectionOptions.JdbcConnectionOptionsBuilder()
.withUrl("jdbc:mysql://localhost:3306/dbname")
.withDriverName("com.mysql.jdbc.Driver")
.withUsername("root")
.withPassword("password")
.build()));
5. 使用事务
output.addSink(JdbcSink.>sink(
"INSERT INTO tablename (name,score) values (?,?)",
new JdbcStatementBuilder>() {
@Override
public void accept(PreparedStatement preparedStatement, Tuple2t) throws SQLException {
preparedStatement.setString(1, t.f0); // name
preparedStatement.setInt(2, t.f1); // score
}
},
new JdbcConnectionOptions.JdbcConnectionOptionsBuilder()
.withUrl("jdbc:mysql://localhost:3306/dbname")
.withDriverName("com.mysql.jdbc.Driver")
.withUsername("root")
.withPassword("password")
.build(),
new JdbcExecutionOptions.Builder().withBatchSize(1000).withBatchIntervalMs(5000).withTransactional(true).build()));
6. 使用连接池
DataSource dataSource = JdbcConnectionPool.create(
"jdbc:mysql://localhost:3306/dbname",
"root",
"password");
env.addSource(new SomeSource())
.addSink(new JdbcBatchingSink>(
dataSource,
"INSERT INTO tablename (name,score) values (?,?)",
new JdbcStatementBuilder>() {
@Override
public void accept(PreparedStatement preparedStatement, Tuple2t) throws SQLException {
preparedStatement.setString(1, t.f0); // name
preparedStatement.setInt(2, t.f1); // score
}
},
new JdbcBatchingSink.Options()
.withBatchIntervalMs(1000L)
.withBatchSize(1000)
.withBatchRetryMaxCount(5)));
综上所述,通过对 MySQL 的最大连接数、 Flink 的并行度、批量写入方式、Upsert 方式、事务和连接池的配置,可以提高 Flink 写入 MySQL 的并行度。