Jupyter是一种功能强大的交互式计算环境,被广泛应用于数据分析、机器学习、科学计算等领域。除了常见的基本功能外,Jupyter还隐藏着许多令人惊叹的黑科技,这些功能可以帮助用户更高效地完成工作,提升工作体验。在本文中,笔者总结了五个Jupyter黑科技,与大家分享。
GUI自动生成代码Visual Python
VisualPython是一个开源项目,它是一款基于图形界面(GUI)的「Python代码生成器」,在 Jupyter Notebook 上作为扩展插件使用。
VisualPython的初衷是为那些在数据科学课程中为编码而苦苦挣扎的学生而开发。对于程序员而言,使用该工具可以保存和重用用户代码;非程序员使用该工具,可以更轻松地学习 Python 语言,以最少的编码技能探索和利用数据科学解决实际问题。
主要特征包括:
- 基于图形界面自动生成 Python 代码。
- 可以按任务创建代码块,如数据处理任务、可视化任务等。
- 可以将分析过程导出为 .vp 文件与他人共享。
Jupyter Notebook环境安装并激活visualpython,即可看到开发界面工具栏的最右边多了一个黄色的小方块按钮,这个小方块就是Visual Python提供的功能。点击黄色的小方块即可直接进入到无代码的拖拽式开发页面了,代码开发页面和组件拖拽会同时出现在编辑页面中。如下图所示。
编Pandas代码时生成有用的提示
使用未优化的pandas通常会减慢数据分析速度,此时可以使用Dovpanda工具,提供有关数据操作步骤的建议或警告。
Jupyter单元格执行完成后获取通知
在Jupyter单元格中运行一些代码后,经常会导航到其他工作区。此时,必须不断返回Jupyter标签,以检查单元格是否已执行。
为了避免这种情况的发生,则可以使用jupyternotify中的%%notify魔法命令在浏览器通知用户Jupyter单元格的执行情况。这对于长时间运行的代码或者需要监控执行情况的代码来说非常方便。
每当单元格完成其执行时,将收到以下通知,单击通知又可以回到Jupyter标签。
深入挖掘数据信息
通常,在Jupyter中加载DataFrame时,会打印预览数据,如下所示:
然而,它几乎没有告诉我们数据内部的任何信息。此时,可以使用Jupyter-DataTables深入挖掘数据信息。如下图所示,通过预览可以看到排序、过滤、导出和分页操作等数据信息。
一键标记数据
处理未标记的数据是,可以使用ipyannotate,在几行代码中进行注释,然后通过点击按钮进行数据标注。如下所示。