JVM(Java 虚拟机)优化手段是指在运行 Java 程序时,通过对字节码的编译和执行过程进行优化,以提升程序的性能和效率。
JVM 优化手段主要有以下几个:
- JIT(Just-In-Time,即时编译):是一种在程序运行时将部分热点代码编译成机器代码的技术,以提高程序的执行性能的机制。
- 逃逸分析:用于确定对象动态作用域是否超过当前方法或线程,通过逃逸分析,编译器可以决定一个对象的作用范围,从而进行相应的优化,但确定对象没有逃逸时,可以进行以下优化:
- 字符串池(String Pool)优化:JVM 通过共享字符串常量,重用字符串对象,以减少内存占用和提升字符串操作的性能。
1、JIT优点和热点代码
JIT 优点包含以下两个:
- 性能优化:由于编译成本地机器代码,程序的执行速度通常比解释性执行或预编译的代码要快得多。
- 平台无关性:JIT 编译器可以根据不同的硬件平台生成不同的机器代码,使得相同的程序可以在不同的计算机上运行,而无需重新编写。
什么是热点代码?
在 HotSpot 虚拟机中,热点代码(Hot Code)是指那些被频繁执行的代码。热点代码的执行次数在不同的 JDK 版本和不同的 JVM 中是不同的,例如,它在 JDK 21 Client 模式下为 1500 次,Server 模式下为 10000 次,这个值可以通过 JVM 参数设置。通常来说,热点代码的识别基于以下两种策略:
- 方法调用次数:当一个方法被调用一定次数后,会被视为热点代码并触发即时编译。这个次数在不同 JDK 版本中可能有所变化,并且可以通过 JVM 参数 -XX:CompileThreshold 进行设置。
- 回边计数:对于循环体等热点区域,通过统计从循环体返回到循环条件检查点的次数(即回边次数),达到一定次数也会触发即时编译。同样,这个阈值也可以通过 JVM 参数 -XX:OnStackReplacePercentage 进行设置。回边计数器有一个计算公式【回边计数器阈值=方法调用计数器阈值*(OnStackReplacePercentage - InterpreterProfilePercentage)】,通过计算,在 JDK 21 Server 模式下,虚拟机回边计数器的阈值为 10700【10000*(140-33)】。
可以使用 java -XX:+PrintFlagsFinal -version 命令查看 JVM 默认配置。
2、栈上分配 VS 标量替换
栈上分配和标量替换是编译器的两种优化技术,它们虽然有一些相似之处,但并不完全相同。
- 栈上分配(Stack Allocation):一种优化技术,它将对象分配在栈上而不是堆上。这种技术适用于编译器可以确定对象不会逃逸出方法,并且对象的生命周期在方法内部结束的情况。通过在栈上分配对象,可以避免在堆上进行内存分配和垃圾回收的开销,从而提高程序的性能和内存使用效率。
- 标量替换(Scalar Replacement):与栈上分配类似,也是一种优化技术。它将一个复杂对象拆分成独立的成员变量,使其成为基本类型或基本类型数组的局部变量。这种技术适用于编译器可以确定对象的成员变量不会逃逸的情况。标量替换可以提供更细粒度的控制,使得编译器可以对独立的成员变量进行更精细的优化,例如寄存器分配和代码优化。
也就是说栈上分配,只是将对象从堆上分配到栈上了;而标量替换是更进一步的优化技术,将对象拆解成基本类型分配到栈上了。
(1)锁消除代码演示
锁消除(Lock Elimination)也叫做同步消除,是一种编译器优化技术,它可以消除对于变量的不必要的锁定操作。锁消除的目的是减少锁的开销,提高程序的性能。例如以下代码:
public void method() {
Object lock = new Object();
synchronized(lock){
System.out.println("www.javacn.site");
}
}
而锁消除之后的代码如下:
public void method(){
System.out.println("www.javacn.site");
}
(2)标量替换代码演示
未优化前的代码如下:
private static class Point {
private int x;
private int y;
}
public static void main(String[] args) {
Point point = createPoint(10, 20);
int sum = point.x + point.y;
System.out.println("Sum: " + sum);
}
private static Point createPoint(int x, int y) {
Point point = new Point();
point.x = x;
point.y = y;
return point;
}
标量替换优化后的代码如下:
public static void main(String[] args) {
int x = 10;
int y = 20;
int sum = x + y;
System.out.println("Sum: " + sum);
}
通过逃逸分析的优化能够减少垃圾回收的压力、减少内存分配和释放带来的性能损耗,并且有可能减少对锁的依赖,以及实现标量替换等,从而整体上提升了应用程序的运行效率。