彻底搞懂Vue响应式数据、依赖收集更新、Watch/Computed原理
响应式原理初始化
响应式数据设置代理
- 访问props的item对应的key时,使用this.[key]会自动代理到vm._props.[key]
- 访问data的item对应的key1时,使用this.[key1]会自动代理到vm._data.[key1]
function initProps(vm: Component, propsOptions: Object) { for (const key in propsOptions) { if (!(key in vm)) { proxy(vm, `_props`, key) } } }
function initData(vm: Component) { let data = vm.$options.data data = vm._data = typeof data === 'function' ? getData(data, vm) : data || {}; const keys = Object.keys(data) const props = vm.$options.props const methods = vm.$options.methods let i = keys.length while (i--) { const key = keys[i] // 监测props是否已经有这个key了,有的话弹出警告 proxy(vm, `_data`, key) } }
export function proxy(target: Object, sourceKey: string, key: string) { sharedPropertyDefinition.get = function proxyGetter() { return this[sourceKey][key] } sharedPropertyDefinition.set = function proxySetter(val) { this[sourceKey][key] = val } Object.defineProperty(target, key, sharedPropertyDefinition) }
Vue.props响应式数据设置
在合并配置mergeOptions()中,会调用normalizeProps()对props的数据进行整理,最终确保initPros调用时props已经是一个对象,因此不需要Observer判断是否是数组,直接对key进行defineReactive即可
function initProps(vm: Component, propsOptions: Object) { const propsData = vm.$options.propsData || {} const props = vm._props = {} const keys = vm.$options._propKeys = [] for (const key in propsOptions) { keys.push(key) const value = validateProp(key, propsOptions, propsData, vm) defineReactive(props, key, value) } }
Vue.data响应式数据设置
- 为data建立一个Observer,主要功能是根据value类型判断,是数组则递归调用observe,为每一个item都创建一个Observer对象,如果是对象,则遍历key,为每一个key都创建响应式监听
function initData(vm: Component) { let data = vm.$options.data data = vm._data = typeof data === 'function' ? getData(data, vm) : data || {} // observe data observe(data, true /* asRootData */) } export function observe(value: any, asRootData: ?boolean): Observer | void { if (!isObject(value) || value instanceof VNode) { return } // ... 判断数据value是否已经设置响应式过 let ob = new Observer(value) return ob }
export class Observer { value: any; dep: Dep; vmCount: number; // number of vms that have this object as root $data constructor(value: any) { this.value = value this.dep = new Dep() if (Array.isArray(value)) { this.observeArray(value) } else { this.walk(value) } } walk(obj: Object) { const keys = Object.keys(obj) for (let i = 0; i < keys.length; i++) { defineReactive(obj, keys[i]) } } observeArray(items: Array) { for (let i = 0, l = items.length; i < l; i++) { observe(items[i]) } } }
Object.defineProperty响应式基础方法
- get:返回对应key的数据 + 依赖收集
- set:设置对应key的数据+派发更新
export function defineReactive(obj: Object, key: string, val: any, ...args) { const dep = new Dep() let childOb = !shallow && observe(val) // 如果val也是object Object.defineProperty(obj, key, { enumerable: true, configurable: true, get: function reactiveGetter() { const value = getter ? getter.call(obj) : val if (Dep.target) { dep.depend() if (childOb) { // key对应的val是Object,当val里面的key发生改变时 // 即obj[key][key1]=xxx // 也会通知目前obj[key]收集的Watcher的更新 childOb.dep.depend() if (Array.isArray(value)) { dependArray(value) } } } return value }, set: function reactiveSetter(newVal) { const value = getter ? getter.call(obj) : val if (newVal === value || (newVal !== newVal && value !== value)) { return } if (setter) { setter.call(obj, newVal) } else { val = newVal } childOb = !shallow && observe(newVal) dep.notify() } }) }
Dep响应式依赖管理类
- 每一个key都有一个Dep管理类
- Dep具备addSub,即关联Watcher(渲染Watcher或者其它)的能力
- Dep具备depend(),被Watcher显式关联,可以被Watcher触发dep.notify()通知它关联Watcher更新的能力
Dep.target = null const targetStack = [] export default class Dep { static target: ?Watcher; id: number; subs: Array; constructor () { this.id = uid++ this.subs = [] } addSub (sub: Watcher) { this.subs.push(sub) } removeSub (sub: Watcher) { remove(this.subs, sub) } depend () { if (Dep.target) { Dep.target.addDep(this) } } notify () { const subs = this.subs.slice() if (process.env.NODE_ENV !== 'production' && !config.async) { subs.sort((a, b) => a.id - b.id) } for (let i = 0, l = subs.length; i < l; i++) { subs[i].update() } } }
Watcher响应式依赖收集和派发更新执行类
- get()方法进行pushTarget(this),触发对应的getter回调,开始收集,然后popTarget(this),停止收集,最后触发cleanupDeps()进行依赖的更新
- update()将更新内容压入队列中,然后根据顺序调用Watcher.run(),也就是回调constructor()传进来的this.cb方法
export default class Watcher { constructor(...args) { this.vm = vm if (isRenderWatcher) { vm._watcher = this } vm._watchers.push(this) this.cb = cb; // 触发更新时调用的方法 this.deps = [] this.newDeps = [] this.depIds = new Set() this.newDepIds = new Set() this.value = this.lazy ? undefined : this.get() } get() { pushTarget(this) let value const vm = this.vm value = this.getter.call(vm, vm) if (this.deep) { traverse(value) } popTarget() this.cleanupDeps() return value } addDep(dep: Dep) { const id = dep.id if (!this.newDepIds.has(id)) { this.newDepIds.add(id) this.newDeps.push(dep) if (!this.depIds.has(id)) { dep.addSub(this) } } } cleanupDeps() { let i = this.deps.length while (i--) { const dep = this.deps[i] if (!this.newDepIds.has(dep.id)) { dep.removeSub(this) } } let tmp = this.depIds this.depIds = this.newDepIds this.newDepIds = tmp this.newDepIds.clear() tmp = this.deps this.deps = this.newDeps this.newDeps = tmp this.newDeps.length = 0 } update() { if (this.lazy) { this.dirty = true } else if (this.sync) { this.run() } else { queueWatcher(this) } } run() { if (this.active) { const value = this.get() if (value !== this.value || isObject(value) || this.deep) { const oldValue = this.value this.value = value if (this.user) { const info = `callback for watcher "${this.expression}"` invokeWithErrorHandling(this.cb, this.vm, [value, oldValue], this.vm, info) } else { this.cb.call(this.vm, value, oldValue) } } } } depend() { let i = this.deps.length while (i--) { this.deps[i].depend() } } }
Object数据类型响应式
最外一层key的响应式设置
使用observe()对每一个Object的key都进行Object.defineProperty()劫持
function observe(value, asRootData) { ob = new Observer(value); return ob } var Observer = function Observer(value) { this.value = value; this.dep = new Dep(); this.vmCount = 0; def(value, '__ob__', this); this.walk(value); }; walk (obj: Object) { const keys = Object.keys(obj) for (let i = 0; i < keys.length; i++) { defineReactive(obj, keys[i]) } }
export function defineReactive(obj: Object, key: string, val: any, customSetter?: ?Function, shallow?: boolean) { if ((!getter || setter) && arguments.length === 2) { val = obj[key] } Object.defineProperty(obj, key, { enumerable: true, configurable: true, get: function reactiveGetter() { const value = getter ? getter.call(obj) : val if (Dep.target) { dep.depend() } return value }, set: function reactiveSetter(newVal) { if (setter) { setter.call(obj, newVal) } else { val = newVal } dep.notify() } }) }
深度key的响应式设置
export function defineReactive(obj: Object, key: string, val: any, customSetter?: ?Function, shallow?: boolean) { const dep = new Dep() let childOb = !shallow && observe(val) Object.defineProperty(obj, key, { enumerable: true, configurable: true, get: function reactiveGetter() { const value = getter ? getter.call(obj) : val if (Dep.target) { dep.depend() if (childOb) { childOb.dep.depend() if (Array.isArray(value)) { dependArray(value) } } } return value }, set: function reactiveSetter(newVal) { if (setter) { setter.call(obj, newVal) } else { val = newVal } childOb = !shallow && observe(newVal) dep.notify() } }) }
- 由上面对observe()方法的分析,它会遍历Object的每一个key,进行Object.defineProperty声明
- 对于Object每一个key对应的value,如果childOb = !shallow && observe(val)不为空,那么它会遍历value对应的每一个key,如果value[key]也是一个Object,那么会再次走到childOb = !shallow && observe(val),直到所有Object都为响应式数据为止
- 对于obj[key]来说,会调用dep.depend(),如果obj[key]本身也是一个对象,即childOb不为空,那么它就会调用childOb.dep.depend(),因此当obj[key][key1]=xx时,也会触发dep.depend()收集的Watcher发生更新,例如
data: { parent: { children: {test: "111"} } } {{parent.children}}
由上面的分析可以知道,当this.parent.children.test发生变化时,会触发this.parent.children收集的渲染Watcher发生变化,从而触发界面重新渲染
额外添加key
由于Object.defineProperty()的限制,无法实现对Object新增key的响应式监听,因此当我们想要为Object设置新的key的时候,需要调用Vue.set方法
export function set(target: Array | Object, key: any, val: any): any { if (key in target && !(key in Object.prototype)) { target[key] = val; return val; } const ob = (target: any).__ob__; if (!ob) { target[key] = val; return val; } defineReactive(ob.value, key, val); ob.dep.notify(); return val; }
Vue.set()的流程可以总结为:
- 为Object增加对应的key和value数据
- 将新增的key加入响应式监听中,如果key对应的value也是Object,按照上面深度key的监听设置分析,会递归调用observe进行深度key的响应式设置
- 手动触发Object收集的Watcher的刷新操作
本质上,上面的三步流程除了第二步有略微差别之外,其它部分跟defineReactive中的set()方法流程一致
删除key
删除key也无法触发响应式的变化,需要手动调用Vue.del()方法:
- 删除Object指定的key
- 手动触发Object收集的Watcher的刷新操作
function del(target: Array | Object, key: any) { if (Array.isArray(target) && isValidArrayIndex(key)) { target.splice(key, 1) return } const ob = (target: any).__ob__ if (!hasOwn(target, key)) { return } delete target[key] if (!ob) { return } ob.dep.notify() }
Array数据类型响应式
前置说明
根据官方文档[1]说明,Vue 不能检测以下数组的变动
- 当你利用索引直接设置一个数组项时,例如:vm.items[indexOfItem] = newValue
- 当你修改数组的长度时,例如:vm.items.length = newLength
举个例子:
var vm = new Vue({ data: { items: ['a', 'b', 'c'] } }) vm.items[1] = 'x' // 不是响应性的 vm.items.length = 2 // 不是响应性的
为了解决第一类问题,以下两种方式都可以实现和 vm.items[indexOfItem] = newValue 相同的效果,同时也将在响应式系统内触发状态更新
// Vue.set Vue.set(vm.items, indexOfItem, newValue) // Array.prototype.splice vm.items.splice(indexOfItem, 1, newValue)
为了解决第二类问题,你可以使用 splice:
vm.items.splice(newLength)
对Array[index]数据的响应式监听
如果item=Array[index]是Object数据,使用observe()对Array的每一个item都进行响应式的声明
function observe(value, asRootData) { ob = new Observer(value); return ob } var Observer = function Observer(value) { this.value = value; this.dep = new Dep(); this.vmCount = 0; def(value, '__ob__', this); if (Array.isArray(value)) { if (hasProto) { protoAugment(value, arrayMethods) } else { copyAugment(value, arrayMethods, arrayKeys) } this.observeArray(value) } }; observeArray(items: Array ) { for (let i = 0, l = items.length; i < l; i++) { observe(items[i]) } }
Vue.set更新Array-item
从下面代码可以看出,Vue.set()更新数组的item本质上也是调用Array.splice()方法
export function set(target: Array | Object, key: any, val: any): any { if (Array.isArray(target) && isValidArrayIndex(key)) { target.length = Math.max(target.length, key) target.splice(key, 1, val) return val } }
Array.splice更新Array-item
从上面的分析可以知道,一开始会触发new Observer(value)的初始化从下面代码可以知道,大部分浏览器会触发protoAugment()方法,也就是改变Array.__proto__
var Observer = function Observer(value) { this.value = value; this.dep = new Dep(); this.vmCount = 0; def(value, '__ob__', this); if (Array.isArray(value)) { if (hasProto) { protoAugment(value, arrayMethods) } else { copyAugment(value, arrayMethods, arrayKeys) } this.observeArray(value) } }; function protoAugment (target, src: Object) { target.__proto__ = src } // node_modules/vue/src/core/observer/array.js const arrayProto = Array.prototype export const arrayMethods = Object.create(arrayProto)
而改变了Array.__proto__多少方法呢?
const methodsToPatch = [ 'push', 'pop', 'shift', 'unshift', 'splice', 'sort', 'reverse' ]
methodsToPatch.forEach(function (method) { const original = arrayProto[method] def(arrayMethods, method, function mutator(...args) { const result = original.apply(this, args) const ob = this.__ob__ let inserted switch (method) { case 'push': case 'unshift': inserted = args break case 'splice': inserted = args.slice(2) break } if (inserted) ob.observeArray(inserted) // notify change ob.dep.notify() return result }) }) // node_modules/vue/src/core/util/lang.js export function def(obj: Object, key: string, val: any, enumerable?: boolean) { Object.defineProperty(obj, key, { value: val, enumerable: !!enumerable, writable: true, configurable: true }) }
从上面代码分析可以知道,Vue劫持了Array的'push','pop','shift', 'unshift', 'splice', 'sort','reverse'方法,一旦运行了这些方法,会主动触发:
- 调用Array原来的方法进行调用,然后返回Array原来的方法的返回值,如Array.push调用后的返回值
- 进行observeArray的响应式设置,更新新设置的item(可能为Object,需要设置响应式)
- 手动触发ob.dep.notify(),触发对应的Watcher更新,达到响应式自动更新的目的
渲染Watcher依赖收集流程分析
仅仅分析最简单的渲染Watcher依赖收集的流程,实际上并不是只有渲染Watcher一种
图片
渲染Watcher派发更新流程分析
图片
computed依赖收集和派发更新分析
测试代码
{{myName}} // { [key: string]: Function | { get: Function, set: Function } } computed: { myName: function() { // 没有set()方法,只有get()方法 return this.firstName + this.lastName; } }
依赖收集流程图分析
图片
依赖收集代码分析
computedWatcher初始化
Vue.prototype._init初始化时,会调用initState()->initComputed(),从而进行computed数据的初始化
// node_modules/vue/src/core/instance/state.js function initComputed(vm: Component, computed: Object) { const watchers = vm._computedWatchers = Object.create(null) for (const key in computed) { const userDef = computed[key]; const getter = typeof userDef === 'function' ? userDef : userDef.get; watchers[key] = new Watcher( vm, getter || noop, noop, computedWatcherOptions //{ lazy: true } ) defineComputed(vm, key, userDef); } }
从上面代码可以知道,最终为每一个computed监听的数据建立一个Watcher,一个数据对应一个computed Watcher,传入{ lazy: true },然后调用defineComputed()方法
export function defineComputed(target: any, key: string, userDef: Object | Function) { // 为了减少分支判断,方便理解,统一假设userDef传入Function sharedPropertyDefinition.get = createComputedGetter(key); sharedPropertyDefinition.set = noop; Object.defineProperty(target, key, sharedPropertyDefinition) } function createComputedGetter(key) { return function computedGetter() { const watcher = this._computedWatchers && this._computedWatchers[key] if (watcher) { if (watcher.dirty) { watcher.evaluate() } if (Dep.target) { watcher.depend() } return watcher.value } } }
从上面代码可以知道,最终defineComputed是进行了Object.defineProperty的数据劫持,一般在computed中都只写get()方法,即
computed: { myName: function() { // 没有set()方法,只有get()方法 return this.firstName + this.lastName; } }
而回到上面代码的分析,defineComputed劫持了computed的get()方法,最终返回watcher.value
渲染Watcher触发ComputedWatcher的get()方法执行
当界面上{myName}渲染myName的时候,会触发myName的get()方法,由于Object.defineProperty的数据劫持,会先调用
- watcher.evaluate()->watcher.get()(从下面的代码可以得出这样的推导关系)
- watcher.depend()
const watcher = this._computedWatchers && this._computedWatchers[key] if (watcher) { if (watcher.dirty) { // evaluate () { // this.value = this.get() // this.dirty = false // } watcher.evaluate() } if (Dep.target) { // depend() { // let i = this.deps.length // while (i--) { // this.deps[i].depend() // } // } watcher.depend() } return watcher.value }
// watcher.js get() { // function pushTarget (target: ?Watcher) { // targetStack.push(target) // Dep.target = target // } pushTarget(this); let value; const vm = this.vm; try { // this.getter = return this.firstName + this.lastName; value = this.getter.call(vm, vm); } catch (e) {} finally { if (this.deep) { // watch类型的watcher才能配置这个参数 traverse(value); } popTarget(); this.cleanupDeps(); } return value; }
从上面的代码可以知道,当调用watcher.evaluate()->watcher.get()的时候,会调用:
- pushTarget(this):将目前的Dep.target 切换到Computed Watcher
- this.getter.call(vm, vm):触发this.firstName对应的get()方法和this.lastName对应的get()方法。由下面的依赖收集代码可以知道,此时this.firstName和this.lastName持有的Dep会进行dep.addSub(this),收集该Computed Watcher
- popTarget():将目前的Dep.target恢复到上一个状态
- cleanupDeps():更新Computed Watcher的所有依赖关系,将无效的依赖关系删除(比如v-if造成的依赖关系不用再依赖)
- 最终返回myName= return this.firstName + this.lastName;
watcher.evaluate():求值 + 更新依赖 + 将涉及到的响应式对象firstName和lastName关联到Computed Watcher
export function defineReactive(obj: Object, key: string, val: any, ...args) { const dep = new Dep() let childOb = !shallow && observe(val) Object.defineProperty(obj, key, { enumerable: true, configurable: true, get: function reactiveGetter() { const value = getter ? getter.call(obj) : val if (Dep.target) { dep.depend() if (childOb) { childOb.dep.depend() if (Array.isArray(value)) { dependArray(value) } } } return value } }) } // Dep.js depend () { if (Dep.target) { Dep.target.addDep(this) } } // watcher.js addDep(dep: Dep) { const id = dep.id if (!this.newDepIds.has(id)) { this.newDepIds.add(id) this.newDeps.push(dep) if (!this.depIds.has(id)) { dep.addSub(this) } } }
回到myName的get()方法,即下面的代码,我们刚刚分析了watcher.evaluate(),那么我们接下来还调用了myName中watcher.depend()我们从上面的代码知道,这个方法主要是用来收集依赖的,此时的Dep.target是渲染Watcher,computed Watcher会进行自身的depend(),本质是拿出自己所有记录的Dep(为了方便理解,我们理解Dep就是一个响应式对象的代理),computed Watcher拿出自己记录的所有的deps[i],然后调用它们的depend()方法,从而完成这些响应式对象(firstName和lastName)与渲染Watcher的关联,最后返回watcher.value
const watcher = this._computedWatchers && this._computedWatchers[key] if (watcher) { if (watcher.dirty) { // 上面分析触发了watcher.get()方法 // 得到对应的watcher.value // 收集了firstName+lastName和computerWatcher的绑定 watcher.evaluate(); // 将目前的Dep.target切换到渲染Watcher } if (Dep.target) { // depend() { // let i = this.deps.length // while (i--) { // this.deps[i].depend() // } // } watcher.depend() } return watcher.value } // watcher.js depend() { // this.deps是从cleanupDeps()中 // this.deps = this.newDeps来的 // this.newDeps是通过addDep()来的 let i = this.deps.length while (i--) { this.deps[i].depend() } } // Dep.js depend() { if (Dep.target) { Dep.target.addDep(this) } }
派发更新流程图分析
图片
派发更新代码分析
computed: { myName: function() { // 没有set()方法,只有get()方法 return this.firstName + this.lastName; } }
当this.firstName发生改变时,会触发this.firstName.dep.subs.notify()功能,也就是触发刚刚注册的两个Watcher: 渲染Watcher和Computed Watcher,首先触发的是Computed Watcher的notify()方法,由下面的代码可以知道,只执行this.dirty=true
update () { // Computed Watcher的this.lazy都为true if (this.lazy) { this.dirty = true } else if (this.sync) { this.run() } else { queueWatcher(this) } }
然后触发渲染Watcher,触发整个界面进行渲染,从而触发该computed[key]的get()方法执行,也就是myName的get()方法执行,由依赖收集的代码可以知道,最终执行为
const watcher = this._computedWatchers && this._computedWatchers[key] if (watcher) { if (watcher.dirty) { // 上面分析触发了watcher.get()方法 // 得到对应的watcher.value watcher.evaluate(); } if (Dep.target) { // depend() { // let i = this.deps.length // while (i--) { // this.deps[i].depend() // } // } watcher.depend() } return watcher.value }
从上面的分析可以知道,computed[key]的get()先收集了一波依赖:
- watcher.evaluate():求值watcher.value + 更新依赖 + 将涉及到的响应式对象关联到Computed Watcher
- watcher.depend():将涉及到的响应式对象关联到当前的Dep.target,即渲染Watcher
然后返回了对应的值watcher.value
computedWatcher一般无set方法,因此触发派发更新就是触发渲染Watcher/其它Watcher持有computed进行重新渲染,从而触发computed的get方法,收集最新依赖以及获取最新值
watch依赖收集和派发更新分析
watch流程图跟computed流程大同小异,因此watch只做源码分析
测试代码
watch支持多种模式的监听方式,比如传入一个回调函数,比如传入一个方法名称,比如传入一个Object,配置参数
// { [key: string]: string | Function | Object | Array } watch: { a: function (val, oldVal) {}, b: 'someMethod', // 方法名 c: { handler: function (val, oldVal) {}, // 值改变时的回调方法 deep: true, // 深度遍历 immediate: true // 马上回调一次 }, // 你可以传入回调数组,它们会被逐一调用 e: [ 'handle1', // 方式1 function handle2 (val, oldVal) {}, // 方式2 { // 方式3 handler: function (val, oldVal) {}, deep: true, immediate: true }, ], // watch vm.e.f's value: {g: 5} 'e.f': function (val, oldVal) {} }
初始化watch
export function initState(vm: Component) { if (opts.watch && opts.watch !== nativeWatch) { initWatch(vm, opts.watch); } } function initWatch(vm: Component, watch: Object) { for (const key in watch) { const handler = watch[key]; // 处理watch:{b: [三种形式都允许]}的形式 if (Array.isArray(handler)) { for (let i = 0; i < handler.length; i++) { createWatcher(vm, key, handler[i]); } } else { createWatcher(vm, key, handler); } } } function createWatcher(vm: Component, expOrFn: string | Function, handler: any, options?: Object) { if (isPlainObject(handler)) { // 处理watch:{b: {handler: 处理函数, deep: true, immediate: true}}的形式 options = handler handler = handler.handler } if (typeof handler === 'string') { // 处理watch: {b: 'someMethod'}的形式 handler = vm[handler] } return vm.$watch(expOrFn, handler, options) }
从上面的代码可以看出,初始化时,会进行watch中各种参数的处理,将3种不同类型的watch回调模式整理成为规范的模式,最终调用Vue.prototype.$watch进行new Watcher的构建
Vue.prototype.$watch = function (expOrFn: string | Function, cb: any, options?: Object): Function { const vm: Component = this // cb是回调方法,如果还是对象,则使用createWatcher拆出来里面的对象 if (isPlainObject(cb)) { return createWatcher(vm, expOrFn, cb, options) } options.user = true // 建立一个watch类型的Watcher // expOrFn: getter // cb: 注册的回调 const watcher = new Watcher(vm, expOrFn, cb, options) if (options.immediate) { // optinotallow={immediate:true}的分支逻辑 pushTarget() invokeWithErrorHandling(cb, vm, [watcher.value], vm, info) popTarget() } return function unwatchFn() { watcher.teardown() } }
依赖收集代码分析
新建Watcher的时候, 在constructor()中会触发
class watcher { constructor() { // watch的key this.getter = parsePath(expOrFn); this.value = this.lazy?undefined:this.get(); } const bailRE = new RegExp(`[^${unicodeRegExp.source}.$_d]`) export function parsePath (path: string): any { if (bailRE.test(path)) { return } const segments = path.split('.') return function (obj) { for (let i = 0; i < segments.length; i++) { if (!obj) return obj = obj[segments[i]] } return obj } }
从上面的代码可以知道,最终this.getter调用的还是传入的obj[key],从下面的get()方法可以知道,赋值this.getter后,会触发get()方法,从而触发this.getter.call(vm, vm),因此最终this.getter得到的就是vm[key]
get() { pushTarget(this) let value const vm = this.vm value = this.getter.call(vm, vm) if (this.deep) { traverse(value); // 深度遍历数组/对象,实现 } popTarget() this.cleanupDeps() return value } // traverse.js export function traverse (val: any) { _traverse(val, seenObjects) seenObjects.clear() } function _traverse (val: any, seen: SimpleSet) { let i, keys const isA = Array.isArray(val) if ((!isA && !isObject(val)) || Object.isFrozen(val) || val instanceof VNode) { return } if (val.__ob__) { const depId = val.__ob__.dep.id if (seen.has(depId)) { return } seen.add(depId) } if (isA) { i = val.length while (i--) _traverse(val[i], seen) } else { keys = Object.keys(val) i = keys.length while (i--) _traverse(val[keys[i]], seen) } }
上面代码的步骤可以概括为
- pushTarget:修复当前的Dep.target为当前的watch类型的Watcher
- this.getter:返回当前的vm[key],同时触发vm[key]的响应式劫持get()方法,从而触发vm[key]持有的Dep对象启动dep.depend()进行依赖收集(如下面代码所示),vm[key]持有的Dep对象将当前的watch类型的Watcher收集到vm[key]中,下次vm[key]发生变化时,会触发watch类型的Watcher进行callback的回调
- traverse(value):深度遍历,会访问每一个Object的key,由于每一个Object的key之前在initState()的时候已经使用Object.defineProperty()进行get方法的劫持,因此触发它们对应的getter方法,进行dep.depend()收集当前的watch类型的Watcher,从而实现改变Object内部深层的某一个key的时候会回调watch类型的Watcher。没有加deep=true的时候,watch类型的Watcher只能监听Object的改变,比如watch:{curData: function(){}},只有this.curData=xxx,才会触发watch,this.curData.children=xxx是不会触发的
- popTarget:恢复Dep.target为上一个状态
- cleanupDeps:更新依赖关系
- 返回值value,依赖收集结束,watch类型的Watcher初始化结束
Object.defineProperty(obj, key, { enumerable: true, configurable: true, get: function reactiveGetter() { const value = getter ? getter.call(obj) : val if (Dep.target) { dep.depend() if (childOb) { childOb.dep.depend() if (Array.isArray(value)) { dependArray(value) } } } return value } })
派发更新代码分析
当watcher的值发生改变时,会触发dep.subs.notify()方法,从上面的分析可以知道,最终会调用watcher.run()方法
run() { if (this.active) { const value = this.get() if ( value !== this.value || isObject(value) || this.deep ) { // set new value const oldValue = this.value this.value = value if (this.user) { const info = `callback for watcher "${this.expression}"` invokeWithErrorHandling(this.cb, this.vm, [value, oldValue], this.vm, info) } else { this.cb.call(this.vm, value, oldValue) } } } }
由于watch类型的Watcher传入了this.user=true,因此会触发invokeWithErrorHandling(this.cb, this.vm, [value, oldValue], this.vm, info),将新值和旧值一起回调,比如
watch: { myObject: function(value, oldValue) {//新值和旧值} }
watchOptions几种模式分析
deep=true
// watcher.js get() { pushTarget(this) let value const vm = this.vm try { value = this.getter.call(vm, vm) } catch (e) { if (this.user) { handleError(e, vm, `getter for watcher "${this.expression}"`) } else { throw e } } finally { // "touch" every property so they are all tracked as // dependencies for deep watching if (this.deep) { traverse(value) } popTarget() this.cleanupDeps() } return value }
在get()方法中进行对象的深度key的遍历,触发它们的getter()方法,进行依赖的收集,可以实现
watch: { myObject: { deep: true, handler: function(value, oldValue) {//新值和旧值} } } this.myObject.a = 2;
虽然上面的例子只是监听了myObject,但是由于加入deep=true,因此this.myObject.a也会触发watcher.run(),如下面代码所示,由于this.deep=true,因此会回调cb(value, oldValue)
run() { if (this.active) { const value = this.get() if ( value !== this.value || isObject(value) || this.deep ) { // set new value const oldValue = this.value this.value = value if (this.user) { const info = `callback for watcher "${this.expression}"` invokeWithErrorHandling(this.cb, this.vm, [value, oldValue], this.vm, info) } else { this.cb.call(this.vm, value, oldValue) } } } }
immediate=true
从下面代码可以知道,当声明immediate=true的时候,初始化Watcher,会马上调用invokeWithErrorHandling(cb, vm, [watcher.value], vm, info),即cb的回调
Vue.prototype.$watch = function ( expOrFn: string | Function, cb: any, options?: Object ): Function { const vm: Component = this if (isPlainObject(cb)) { return createWatcher(vm, expOrFn, cb, options) } options = options || {} options.user = true const watcher = new Watcher(vm, expOrFn, cb, options) if (options.immediate) { const info = `callback for immediate watcher "${watcher.expression}"` pushTarget() invokeWithErrorHandling(cb, vm, [watcher.value], vm, info) popTarget() } return function unwatchFn() { watcher.teardown() } } watch: { myObject: { immediate: true, handler: function() {...初始化马上触发一次} } }
sync=true
如果声明了sync=true,在dep.sub.notify()中,会马上执行,如果没有声明sync=true,会推入队列中,等到下一个nextTick周期才会执行
update() { /* istanbul ignore else */ if (this.lazy) { this.dirty = true } else if (this.sync) { this.run() } else { queueWatcher(this) } } export function queueWatcher(watcher: Watcher) { const id = watcher.id if (has[id] == null) { has[id] = true if (!flushing) { queue.push(watcher) } else { // if already flushing, splice the watcher based on its id // if already past its id, it will be run next immediately. let i = queue.length - 1 while (i > index && queue[i].id > watcher.id) { i-- } queue.splice(i + 1, 0, watcher) } // queue the flush if (!waiting) { waiting = true if (process.env.NODE_ENV !== 'production' && !config.async) { flushSchedulerQueue() return } nextTick(flushSchedulerQueue) } } }