重磅发布|AutoMQ 1.0.0 GA 版本官宣:已验证生产环境可用性

2024年 3月 9日 90.0k 0

AutoMQ 是基于云构建的无服务、极速弹性、极具成本效益的下一代 Kafka。100%兼容Apache Kafka,无分区数据复制。在无副作用的前提下解决了 Kafka 弹性、运维上的诸多痛点并且带来了数量级的成本降低。

 

AutoMQ 1.0.0 GA 版本现已在 Github 仓库 (https://github.com/AutoMQ/automq-for-kafka) 正式发布,欢迎大家关注与下载使用。

 

我们自信地认为 1.0.0 可以作为 GA 版本,用于生产环境主要是基于以下事实:

  • 通过我们自研 Long Running 自动化测试框架长时间稳定运行,对 GA 版本兼容性、稳定性、性能有全面的长时间可靠验证。

  • 通过自研 Long Running Chaos 自动化测试长时间稳定运行,对各故障注入场景注入网络问题、磁盘hang等都可以正常及时恢复。

  • 长时间稳定运行E2E测试,覆盖 Apache Kafka 所有测试用例(Kraft相关部分)合计387个测试用例。

  • 支持统一完整的指标透出,可用于全面监控 AutoMQ,满足投产标准。

  • 内核大量优化与改进,保证 AutoMQ 在各种功能、性能上满足我们的GA标准。性能白皮书可以从官网(https://www.automq.com)下载。

版本更新细节包括:

  • 在 AutoMQ 多个早期用户真实场景经过打磨与验证。

  • ci: Bump version to 1.0.0-rc8 by
    @mooc9988 in
    #785

  • build(s3stream): switch back to dev mode by
    @SCNieh in
    #786

  • fix(e2e): wait for more time for broker hard bounce by
    @mooc9988 in
    #787

  • feat(issues791): change s3.stream.object.compaction.max.size.bytes default 1GB by
    @superhx in
    #792

  • fix(auth): throw an exception when failed to create a credential from env by
    @Chillax-0v0 in
    #793

  • fix(e2e): fix transaction timeout; merge streams tests by
    @mooc9988 in
    #795

  • feat(core): verify stream epoch for stream object commit by
    @SCNieh in
    #796

  • fix(core): prevent generate stream object record for noop object id by
    @SCNieh in
    #797

  • fix(issues798): checkpoint NPE by
    @superhx in
    #800

  • fix(e2e): add consumer api timeout to 90s in hard bounce tests by
    @mooc9988 in
    #803

  • feat(issues801): stream trim only update stream metadata by
    @superhx in
    #805

  • feat(core): add metrics to monitor auto balancer metrics delay by
    @SCNieh in
    #807

  • fix(issues806): stream object leak by
    @superhx in
    #808

  • fix: range end offset isn't revertable by
    @superhx in
    #809

  • chore: rename s3ObjectRetention* to s3ObjectDeleteRetention for a more precise description by
    @daniel-y in
    #810

  • fix: set destroyed object size by
    @superhx in
    #811

  • chore: suppress out of order error by
    @superhx in
    #812

  • fix(metrics): present metrics from active controller only by
    @SCNieh in
    #815

  • fix(core): prevent anomaly detect exit on inactive controller by
    @SCNieh in
    #816

  • fix(issues817): txn index fetch out of bound by
    @superhx in
    #818

  • feat(shell): add metadata summary to metadata shell by
    @SCNieh in
    #813

  • fix(ReplicaManager): fix memory leak caused by uncaught exception by
    @Chillax-0v0 in
    #821

  • fix(core): remove topic partition metrics on partition offline by
    @SCNieh in
    #820

  • feat(core): add metrics to monitor s3 objects by
    @SCNieh in
    #823

  • fix(core): record s3 object metrics on active controller only by
    @SCNieh in
    #824

  • feat: add object ttl reach log by
    @superhx in
    #825

  • fix(issues826): fix consume records leak in closing channel by
    @superhx in
    #827

  • fix(pr-827): fix release
    PooledMemoryRecords twice by
    @Chillax-0v0 in
    #828

  • chore: support release tgz file in workflow by
    @KaimingWan in
    #832

  • fix(core): catch exceptions on replaying records by
    @SCNieh in
    #836

  • feat(core): refine grafana dashboards by
    @SCNieh in
    #837

  • fix(core): fix auto balancer metrics delay time calculation by
    @SCNieh in
    #838

  • fix(ReplicaManager): release permits after sending responses by
    @Chillax-0v0 in
    #831

  • fix: log permanet fail by
    @superhx in
    #839

  • feat(core): redirect JUL log to sl4j and remove unused logging exporter by
    @SCNieh in
    #843

  • perf(DelayedFetch): only try to fast read on complete a delayed fetch by
    @Chillax-0v0 in
    #844

  • perf(ReplicaManager): return fast if slow fetch timeout by
    @Chillax-0v0 in
    #845

  • fix(core): fix node id regex in broker dashboard by
    @SCNieh in
    #841

  • feat: record pooled record memory usage by
    @superhx in
    #846

  • ci: skip nightly schedule on forks by
    @tisonkun in
    #842

  • fix(metrics): add label 'version' to kafka.request.count by
    @SCNieh in
    #847

  • feat(telemetry): add host name to OTel resource by
    @SCNieh in
    #849

  • feat(metrics): metrics on fetch limiters and executors by
    @Chillax-0v0 in
    #848

  • feat(metrics): add buffer and thread metrics by
    @ShadowySpirits in
    #851

  • feat(telemetry): add direct memory panels by
    @SCNieh in
    #853

  • fix(telemetry): fix read ahead throughput panel unit by
    @SCNieh in
    #854

  • feat(metrics): rename DirectByteBufAlloc to ByteBufAlloc by
    @ShadowySpirits in
    #855

  • fix(telemetry): fix memory allocation metrics name by
    @SCNieh in
    #856

  • feat(metrics): enable buffer pools metrics by
    @ShadowySpirits in
    #857

  • fix: remove special char from issue template file name by
    @superhx in
    #858

  • fix(telemetry): fix jvm metrics by
    @SCNieh in
    #859

  • fix(telemetry): refine grafana dashboard by
    @SCNieh in
    #860

  • feat: release automq 1.0.0 by
    @superhx in
    #861

  • ci: Bump version to 1.0.0 by
    @superhx in
    #862

  • ci: fix regex on release by
    @Chillax-0v0 in
    #863

END

关于我们

AutoMQ 是来自 Apache RocketMQ 和 Linux LVS 项目的核心团队,曾经见证并应对过消息队列基础设施在大型互联网公司和云计算公司的挑战。现在我们基于对象存储优先、存算分离、多云原生等技术理念,重新设计并实现了 Apache Kafka 和 Apache RocketMQ,带来高达 10 倍的成本优势和百倍的弹性效率提升。

🌟 GitHub 地址:
https://github.com/AutoMQ

💻 官网:
https://www.automq.com

👀 B 站:
AutoMQ 官方账号

🔍 视频号:AutoMQ

相关文章

塑造我成为 CTO 之路的“秘诀”
“人工智能教母”的公司估值达 10 亿美金
教授吐槽:985 高校成高级蓝翔!研究生基本废了,只为房子、票子……
Windows 蓝屏中断提醒开发者:Rust 比 C/C++ 更好
Claude 3.5 Sonnet 在伽利略幻觉指数中名列前茅
上海新增 11 款已完成登记生成式 AI 服务

发布评论