C++ 函数性能优化中的 SIMD 技术应用

2024年 4月 23日 62.2k 0

simd技术是一种并行处理技术,可显著提升处理大量数据的函数性能。它允许在宽寄存器上执行单条指令,一次处理多个数据元素。在实战中,通过向量化循环可应用simd,如求和函数中使用128位寄存器同时处理4个32位整数。性能测试表明,在intel i7-8700k处理器的非simd版本函数耗时0.028秒,而simd版本函数仅耗时0.007秒,提升约4倍。

C++ 函数性能优化中的 SIMD 技术应用

C++ 函数性能优化中的 SIMD 技术应用

简介
SIMD(单指令多数据)技术是一种优化技术,允许在并行处理单元上对多个数据元素执行单条指令。它可以大幅提升处理大量数据的函数性能。

原理
SIMD 指令使用宽度较大的寄存器,一次可以处理多个数据元素。例如,一个 128 位的寄存器可以同时处理 4 个浮点数或 8 个整数。

实战案例

我们以一个求和函数为例来演示 SIMD 的应用:

int sum(int* arr, int n) {
  int result = 0;
  for (int i = 0; i < n; i++) {
    result += arr[i];
  }
  return result;
}

使用 SIMD,我们可以将循环向量化:

#include 

int sum_simd(int* arr, int n) {
  int result = 0;
  for (int i = 0; i < n; i += 4) {
    __m128i vec = _mm_loadu_si128((__m128i*)(arr + i));
    result += _mm_reduce_add_epi32(vec);
  }
  return result;
}

在上面代码中,我们使用 __m128i 来表示宽度为 128 位的寄存器,它可以同时处理 4 个 32 位整数。我们使用 _mm_loadu_si128_mm_reduce_add_epi32 指令分别加载和求和 4 个整数。

性能测试

我们使用以下代码进行性能测试:

#include 
#include 

int main() {
  int arr[1000000];
  std::mt19937 rng(1234);
  std::generate(arr, arr + 1000000, [&]() { return rng(); });

  auto start = std::chrono::high_resolution_clock::now();
  int result = sum(arr, 1000000);
  auto end = std::chrono::high_resolution_clock::now();

  std::cout << "Non-SIMD time: " << std::chrono::duration(end - start).count() << " seconds" << std::endl;

  start = std::chrono::high_resolution_clock::now();
  result = sum_simd(arr, 1000000);
  end = std::chrono::high_resolution_clock::now();

  std::cout << "SIMD time: " << std::chrono::duration(end - start).count() << " seconds" << std::endl;
}

在 Intel i7-8700K 处理器上,非 SIMD 版本函数耗时约 0.028 秒,而 SIMD 版本函数耗时仅为 0.007 秒,提升了约 4 倍。

结论

SIMD 技术可以有效优化处理大量数据的 C++ 函数。通过向量化循环,我们可以利用并行处理单元大幅提升函数性能。

以上就是C++ 函数性能优化中的 SIMD 技术应用的详细内容,更多请关注每日运维网(www.mryunwei.com)其它相关文章!

相关文章

JavaScript2024新功能:Object.groupBy、正则表达式v标志
PHP trim 函数对多字节字符的使用和限制
新函数 json_validate() 、randomizer 类扩展…20 个PHP 8.3 新特性全面解析
使用HTMX为WordPress增效:如何在不使用复杂框架的情况下增强平台功能
为React 19做准备:WordPress 6.6用户指南
如何删除WordPress中的所有评论

发布评论