技术分享 | MySQL 生产环境 GROUP BY 优化实践

2024年 7月 8日 59.0k 0

MySQL 生产环境 GROUP BY 优化实践,执行时间:3s->30ms!

案例介绍

首先,我们看一个生产环境上 GROUP BY 语句 的优化案例。

SQL 优化前:执行时间 3s
SELECT taskUniqueId,
         max(reportTime) AS reportTime
FROM task_log_info
WHERE reportTime > '2024-04-07'
GROUP BY  taskUniqueId
SQL 优化后:执行时间 30ms!
SELECT a.taskUniqueId,
        reportTime
FROM task_log_info a
JOIN
    (SELECT taskUniqueId,
        max(id) AS id
    FROM task_log_info
    GROUP BY  taskUniqueId ) tmp
    ON a.id=tmp.id
        AND reportTime>='2024-04-07'

注意:idreporttime 字段值具有相关性的情况才可以这样修改。

两条 SQL 的 GROUP BY 使用了同一个索引,但是效率却相差很多,这到底是为什么呢?

环境准备

对于 GROUP BY 在使用索引上的优化,分为两种情况讨论:

  1. 表上无索引。执行时,会生成临时表进行分组。可以通过索引来优化,来避免使用临时表。
  2. 表上有索引。 GROUP BY 语句有几种扫描算法:
    • 松散索引扫描(Loose Index Scan)
    • 紧凑索引扫描(Tight Index Scan)
    • 两种算法结合

准备测试数据

CREATE TABLE t2 (
  id INT AUTO_INCREMENT,
  c1 CHAR(64) NOT NULL,
  c2 CHAR(64) NOT NULL,
  c3 CHAR(64) NOT NULL,
  c4 CHAR(64) NOT NULL,
  PRIMARY KEY(id),
  KEY c1_c2_c3_idx (c1, c2,c3)
) ENGINE=INNODB;

INSERT INTO t2 VALUES (null,'a','b','a','a'), (null,'a','b','a','a'),
                      (null,'a','c','a','a'), (null,'a','c','a','a'),
                      (null,'a','d','b','b'), (null,'a','b','b','b'),
                      (null,'d','b','c','c'), (null,'e','b','c','c'),
                      (null,'f','c','d','d'), (null,'k','c','d','d'),
                      (null,'y','d','y','y'), (null,'f','b','f','y'),
                      (null,'a','b','a','a'), (null,'a','b','a','a'),
                      (null,'a','c','a','a'), (null,'a','c','a','a'),
                      (null,'a','d','b','b'), (null,'a','b','b','b'),
                      (null,'d','b','c','c'), (null,'e','b','c','c'),
                      (null,'f','c','d','d'), (null,'k','c','d','d'),
                      (null,'y','d','y','y'), (null,'f','b','f','y');  

-- 收集统计信息,否则可能影响测试
ANALYZE TABLE t2;

无索引的情况

不使用索引的 GROUP BY

mysql> explain select c4,count(*) from t2 group by c4 order by null;
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-----------------+
| id | select_type | table | partitions | type | possible_keys | key  | key_len | ref  | rows | filtered | Extra           |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-----------------+
|  1 | SIMPLE      | t2    | NULL       | ALL  | NULL          | NULL | NULL    | NULL |   24 |   100.00 | Using temporary |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-----------------+
1 row in set, 1 warning (0.00 sec)

mysql> explain select c4,count(*) from t2 group by c4;
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+---------------------------------+
| id | select_type | table | partitions | type | possible_keys | key  | key_len | ref  | rows | filtered | Extra                           |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+---------------------------------+
|  1 | SIMPLE      | t2    | NULL       | ALL  | NULL          | NULL | NULL    | NULL |   24 |   100.00 | Using temporary; Using filesort |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+---------------------------------+
1 row in set, 1 warning (0.00 sec)

Extra: Using temporary

可以看到这里使用到了临时表。

使用索引的 GROUP BY

mysql> explain select c1,count(*) from t2 group by c1;
+----+-------------+-------+------------+-------+---------------+--------------+---------+------+------+----------+-------------+
| id | select_type | table | partitions | type  | possible_keys | key          | key_len | ref  | rows | filtered | Extra       |
+----+-------------+-------+------------+-------+---------------+--------------+---------+------+------+----------+-------------+
|  1 | SIMPLE      | t2    | NULL       | index | c1_c2_c3_idx  | c1_c2_c3_idx | 768     | NULL |   24 |   100.00 | Using index |
+----+-------------+-------+------------+-------+---------------+--------------+---------+------+------+----------+-------------+
1 row in set, 1 warning (0.01 sec)

Extra: Using index & type: index

表示全索引扫描。这种情况下,如果表数据量很大,还是会比较耗时的。

有索引的情况

有索引并正常使用的情况,索引的访问有两种算法:

  1. 松散索引扫描(Loose Index Scan)
    • 不需要扫描所有的索引,根据分组前缀(GROUY BY 的字段)跳跃扫描部分
    • Extra: Using index for group-by
  2. 紧凑索引扫描(Tight Index Scan)
    • 需要扫描范围或全部的索引
    • Extra: Using index

另外还有一种将两种算法结合使用的方式我们后文说明。

下面是两条 SQL 分别使用 Loose Index Scan 和 Tight Index Scan:

mysql> explain SELECT c1,MIN(c2) FROM t2 GROUP BY c1;
+----+-------------+-------+------------+-------+---------------+--------------+---------+------+------+----------+--------------------------+
| id | select_type | table | partitions | type  | possible_keys | key          | key_len | ref  | rows | filtered | Extra                    |
+----+-------------+-------+------------+-------+---------------+--------------+---------+------+------+----------+--------------------------+
|  1 | SIMPLE      | t2    | NULL       | range | c1_c2_c3_idx  | c1_c2_c3_idx | 256     | NULL |    7 |   100.00 | Using index for group-by |
+----+-------------+-------+------------+-------+---------------+--------------+---------+------+------+----------+--------------------------+
1 row in set, 1 warning (0.00 sec)


mysql> explain SELECT c1,COUNT(*) FROM t2 GROUP BY c1;
+----+-------------+-------+------------+-------+---------------+--------------+---------+------+------+----------+-------------+
| id | select_type | table | partitions | type  | possible_keys | key          | key_len | ref  | rows | filtered | Extra       |
+----+-------------+-------+------------+-------+---------------+--------------+---------+------+------+----------+-------------+
|  1 | SIMPLE      | t2    | NULL       | index | c1_c2_c3_idx  | c1_c2_c3_idx | 768     | NULL |   24 |   100.00 | Using index |
+----+-------------+-------+------------+-------+---------------+--------------+---------+------+------+----------+-------------+
1 row in set, 1 warning (0.00 sec)


mysql> SELECT c1,MIN(c2),COUNT(*) FROM t2 GROUP BY c1;
+----+---------+----------+
| c1 | MIN(c2) | COUNT(*) |
+----+---------+----------+
| a  | b       |       12 |
| d  | b       |        2 |
| e  | b       |        2 |
| f  | b       |        4 |
| k  | c       |        2 |
| y  | d       |        2 |
+----+---------+----------+
6 rows in set (0.00 sec)
第一条 SQL 扫描示意图

技术分享 | MySQL 生产环境 GROUP BY 优化实践-1

第二条 SQL 扫描示意图

技术分享 | MySQL 生产环境 GROUP BY 优化实践-2

下面,我们详细说明一下两种扫描方式。

Loose Index Scan

跳跃扫描部分索引,而不需要扫描全部。

举例:

mysql> explain SELECT c1,MIN(c2) FROM t2 GROUP BY c1;
+----+-------------+-------+------------+-------+---------------+--------------+---------+------+------+----------+--------------------------+
| id | select_type | table | partitions | type  | possible_keys | key          | key_len | ref  | rows | filtered | Extra                    |
+----+-------------+-------+------------+-------+---------------+--------------+---------+------+------+----------+--------------------------+
|  1 | SIMPLE      | t2    | NULL       | range | c1_c2_c3_idx  | c1_c2_c3_idx | 256     | NULL |    7 |   100.00 | Using index for group-by |
+----+-------------+-------+------------+-------+---------------+--------------+---------+------+------+----------+--------------------------+
1 row in set, 1 warning (0.00 sec)

ysql> SELECT c1,MIN(c2),COUNT(*) FROM t2 GROUP BY c1;
+----+---------+----------+
| c1 | MIN(c2) | COUNT(*) |
+----+---------+----------+
| a  | b       |       12 |
| d  | b       |        2 |
| e  | b       |        2 |
| f  | b       |        4 |
| k  | c       |        2 |
| y  | d       |        2 |
+----+---------+----------+
6 rows in set (0.00 sec)

Extra: Using index for group-by

表示使用松散索引扫描。

使用场景

  1. 当需要获取每个分组的某条记录,而非对全部记录做聚合运算时可能会用到,比如:
    • 最小值或最大值:MIN()MAX()
    • 统计类:COUNT(distinct)SUM(distinct)AVG(distinct)

注意:如果 SQL 语句中既有 1-2 个 min\max,也有 1-3 个 count(distinct)\sum(distinct)\avg(distinct) 时,无法用到 Loose index;两组分别出现的时候才可能会用到。

  1. distinct 可以转换为 GROUP BY 进行处理。

使用到 Loose Index Scan 其他必要条件:

  • 查询基于一个表。
  • GROUP BY 的字段满足索引的最左匹配原则。
  • 聚合函数使用的列,必须包含在索引上;且使用多个聚合函数时,必须使用相同的字段,且 GROUP BY 字段+聚合函数字段也必须满足最左匹配原则。
  • 索引中字段必须是全字段索引,而不能是前缀索引,例如 INDEX(c1(10))

以上条件结合索引的结构就很好理解了。

另外,在选择是否使用 Loose Index Scan 时,也会受到 SQL、统计信息、成本等因素的影响。

举例:

-- 场景 1
-- MIN()、MAX()
SELECT c1,MIN(c2),MAX(c2) FROM t2 GROUP BY c1;
SELECT c1,c2,MAX(c3),MIN(c3)  FROM t2 WHERE c2 > 'k' GROUP BY c1, c2;
SELECT c1,c2,MAX(c3),MIN(c3)  FROM t2 WHERE c3 > 'k' GROUP BY c1, c2;
SELECT c1,c2,c3,MAX(id) FROM t2  GROUP BY c1,c2,c3;  
SELECT c1, c2 FROM t2 WHERE c3 = 'd' GROUP BY c1, c2;

-- 以下几种情况在当前数据量和数据分布下没有用到,和成本计算有关,结合后文成本对比的章节改变数据量和数据分布测试出来
SELECT c1,c2,MAX(c3),MIN(c3)  FROM t2 WHERE c1>='k' and c2 > 'f' GROUP BY c1, c2;  
SELECT DISTINCT c1, c2 FROM t2 where c1>'k';  
SELECT c1,c2,count(distinct c3) FROM t2 where c1>='k' and c2>'k' GROUP BY c1,c2;  

-- count(distinct)、sum(distinct)、avg(distinct)
SELECT c1,count(distinct c2,c3) FROM t2 GROUP BY c1;
SELECT c1,c2,sum(distinct c3) FROM t2 GROUP BY c1,c2;
SELECT c1,c2,sum(distinct c3) FROM t2 where c2>'k' GROUP BY c1,c2;

-- 场景 2
SELECT DISTINCT c1, c2 FROM t2;

-- 无法使用到 Loose Index Scan
SELECT c1,count(distinct c2,c3),sum(distinct c2) FROM t2 GROUP BY c1;

Tight Index Scan

对于无法使用到 Loose Index Scan 的一些 GROUP BY,在满足索引最左匹配原则情况下可能会用到 Tight Index Scan。

该种方式实际上是范围索引扫描或全部索引扫描,数据量大的情况下性能仍然可能会比较差,但是相比无索引还是可以避免使用临时表和全表扫描,在某些情况下有一定的优化作用。

两种算法结合

对于统计类 AGG(DISTINCT) 即 SUM|COUNT|AVG(distinct),可能会出现使用松散索引扫描(Loose Index Scan)成本大于紧凑索引扫描(Tight Index Scan)的情况。

两种方式在引擎层主要包含的成本:

  • Loose Index Scan
    • 读取分组的第一条记录,得到分组前缀
    • 根据分组前缀读取分组的第一条或最后一条记录返回给 SERVER 层
  • Tight Index Scan
    • 从 ENGINE 层读取数据,返回给 SERVER 层
    • SERVER 层判断是否符合 WHERE 条件的记录,并根据聚合函数进行处理

可以看到,对于 ENGINE 层的访问,Loose Index Scan 的成本有可能会高于 Tight Index Scan,且在 MySQL 中,引擎层读取数据页的成本常数是 1,SERVER 层判断一条记录的成本常数是 0.2。

至于 MIN/MAX 为什么不会出现 Loose Index Scan 成本 > Tight Index Scan 成本,我理解只有到组内值都是唯一的情况下才会出现吧?那这样也没有必要去分组求最值了。欢迎在留言处讨论。

在某些情况下,Loose Index Scan 的成本会高于 Tight Index Scan,比如:

  • 当分组较多,但组内的记录数并不多或唯一值较高的情况,对于每一个分组,都需要扫描两次,能跳过的记录数很少的情况。即 Loose Index Scan 在分组字段的选择性相对不太高,组内的数据量相对较多的情况更适用。

举例:

该 SQL 在当前的测试数据中,松散扫描的成本还是要低于紧凑扫描。

select count(distinct c1,c2) from t2;

mysql> explain select count(distinct c1,c2) from t2;
+----+-------------+-------+------------+-------+---------------+--------------+---------+------+------+----------+--------------------------+
| id | select_type | table | partitions | type  | possible_keys | key          | key_len | ref  | rows | filtered | Extra                    |
+----+-------------+-------+------------+-------+---------------+--------------+---------+------+------+----------+--------------------------+
|  1 | SIMPLE      | t2    | NULL       | range | c1_c2_c3_idx  | c1_c2_c3_idx | 512     | NULL |   10 |   100.00 | Using index for group-by |
+----+-------------+-------+------------+-------+---------------+--------------+---------+------+------+----------+--------------------------+
1 row in set, 1 warning (0.01 sec)

新建一个相同表结构的表,插入下面的测试数据。

INSERT INTO t2 VALUES (null,'a','b','a','a'), (null,'a','b','a','a'),
                      (null,'k','c','a','a'), (null,'k','g','a','a'),
                      (null,'a','d','b','b'), (null,'a','b','b','b'),
                      (null,'d','b','c','c'), (null,'e','b','c','c'),
                      (null,'f','c','d','d'), (null,'k','c','d','d'),
                      (null,'y','d','y','y'), (null,'f','b','f','y'),
                      (null,'j','b','a','a'), (null,'m','b','a','a'),
                      (null,'z','c','a','a'), (null,'t','c','a','a'),
                      (null,'x','d','b','b'), (null,'x','b','b','b'),
                      (null,'d','b','c','c'), (null,'e','b','c','c'),
                      (null,'f','c','d','d'), (null,'k','c','d','d'),
                      (null,'y','d','y','y'), (null,'f','b','f','y'); 

-- 其数据分布
mysql> select c1,c2,count(*) from t2 group by c1,c2;
+----+----+----------+
| c1 | c2 | count(*) |
+----+----+----------+
| a  | b  |        3 |
| a  | d  |        1 |
| d  | b  |        2 |
| e  | b  |        2 |
| f  | b  |        2 |
| f  | c  |        2 |
| j  | b  |        1 |
| k  | c  |        3 |
| k  | g  |        1 |
| m  | b  |        1 |
| t  | c  |        1 |
| x  | b  |        1 |
| x  | d  |        1 |
| y  | d  |        2 |
| z  | c  |        1 |
+----+----+----------+
15 rows in set (0.00 sec)

mysql> explain select count(distinct c1,c2) from t2;
+----+-------------+-------+------------+-------+---------------+--------------+---------+------+------+----------+-------------------------------------+
| id | select_type | table | partitions | type  | possible_keys | key          | key_len | ref  | rows | filtered | Extra                               |
+----+-------------+-------+------------+-------+---------------+--------------+---------+------+------+----------+-------------------------------------+
|  1 | SIMPLE      | t2    | NULL       | range | c1_c2_c3_idx  | c1_c2_c3_idx | 512     | NULL |   16 |   100.00 | Using index for group-by (scanning) |
+----+-------------+-------+------------+-------+---------------+--------------+---------+------+------+----------+-------------------------------------+
1 row in set, 1 warning (0.00 sec)

Extra: Using index for group-by (scanning)

该方式可以理解为 Loose Index Scan 的扩展或两种方式的结合(索引顺序扫描的同时进行去重)。

示意图

技术分享 | MySQL 生产环境 GROUP BY 优化实践-1

最后,再回到文章开头的案例,其执行计划如下:

优化前

技术分享 | MySQL 生产环境 GROUP BY 优化实践-4

优化后

技术分享 | MySQL 生产环境 GROUP BY 优化实践-5

其核心就是将紧凑索引扫描转化为了松散索引扫描。

总结

对于 GROUP BY 可以使用索引进行优化,Loose Index Scan 相对于 Tight Index Scan 在一些情况下可以大大减少扫描的行数,使用 Loose Index Scan 时,Extra: Using index for group-by。

在 Loose Index Scan 的成本大于 Tight Index Scan 的一些情况下,可以尝试用到两者的结合的方式,Extra: Using index for group-by (scanning)

Loose Index Scan 更适用于分组内重复值相对较多,分组个数相对较少的情况。

参考链接

  • https://dev.mysql.com/doc/refman/5.7/en/group-by-optimization.html
  • https://dev.mysql.com/blog-archive/what-is-the-scanning-variant-of-a-loose-index-scan/
  • MySQL 怎么用索引实现 group by?-鸿蒙开发者社区-51CTO.COM
  • https://www.oreilly.com/library/view/high-performance-mysql/9780596101718/ch04.html

相关文章

Oracle如何使用授予和撤销权限的语法和示例
Awesome Project: 探索 MatrixOrigin 云原生分布式数据库
下载丨66页PDF,云和恩墨技术通讯(2024年7月刊)
社区版oceanbase安装
Oracle 导出CSV工具-sqluldr2
ETL数据集成丨快速将MySQL数据迁移至Doris数据库

发布评论