理解 Python 的 Dataclasses(一)
如果你正在阅读本文,那么你已经意识到了 Python 3.7 以及它所包含的新特性。就我个人而言,我对 Dataclasses
感到非常兴奋,因为我等了它一段时间了。
本系列包含两部分:
fields
介绍
Dataclasses
是 Python 的类(LCTT 译注:更准确的说,它是一个模块),适用于存储数据对象。你可能会问什么是数据对象?下面是定义数据对象的一个不太详细的特性列表:
- 它们存储数据并代表某种数据类型。例如:一个数字。对于熟悉 ORM 的人来说,模型实例就是一个数据对象。它代表一种特定的实体。它包含那些定义或表示实体的属性。
- 它们可以与同一类型的其他对象进行比较。例如:一个数字可以是
greater than
(大于)、less than
(小于) 或equal
(等于) 另一个数字。
当然还有更多的特性,但是这个列表足以帮助你理解问题的关键。
为了理解 Dataclasses
,我们将实现一个包含数字的简单类,并允许我们执行上面提到的操作。
首先,我们将使用普通类,然后我们再使用 Dataclasses
来实现相同的结果。
但在我们开始之前,先来谈谈 Dataclasses
的用法。
Python 3.7 提供了一个装饰器 dataclass,用于将类转换为 dataclass
。
你所要做的就是将类包在装饰器中:
from dataclasses import dataclass
@dataclass
class A:
...
现在,让我们深入了解一下 dataclass
带给我们的变化和用途。
初始化
通常是这样:
class Number:
def __init__(self, val):
self.val = val
>>> one = Number(1)
>>> one.val
>>> 1
用 dataclass
是这样:
@dataclass
class Number:
val:int
>>> one = Number(1)
>>> one.val
>>> 1
以下是 dataclass
装饰器带来的变化:
__init__
,然后将值赋给 self
,dataclass
负责处理它(LCTT 译注:此处原文可能有误,提及一个不存在的 d
)val
是 int
类型。这无疑比一般定义类成员的方式更具可读性。Python 之禅: 可读性很重要
它也可以定义默认值:
@dataclass
class Number:
val:int = 0
表示
对象表示指的是对象的一个有意义的字符串表示,它在调试时非常有用。
默认的 Python 对象表示不是很直观:
class Number:
def __init__(self, val = 0):
self.val = val
>>> a = Number(1)
>>> a
>>>
这让我们无法知悉对象的作用,并且会导致糟糕的调试体验。
一个有意义的表示可以通过在类中定义一个 __repr__
方法来实现。
def __repr__(self):
return self.val
现在我们得到这个对象有意义的表示:
>>> a = Number(1)
>>> a
>>> 1
dataclass
会自动添加一个 __repr__
函数,这样我们就不必手动实现它了。
@dataclass
class Number:
val: int = 0
>>> a = Number(1)
>>> a
>>> Number(val = 1)
数据比较
通常,数据对象之间需要相互比较。
两个对象 a
和 b
之间的比较通常包括以下操作:
a < b
a > b
a == b
a >= b
a import random >>> a = [Number(random.randint(1,10)) for _ in range(10)] #generate list of random numbers >>> a >>> [Number(val=2), Number(val=7), Number(val=6), Number(val=5), Number(val=10), Number(val=9), Number(val=1), Number(val=10), Number(val=1), Number(val=7)] >>> sorted_a = sorted(a) #Sort Numbers in ascending order >>> [Number(val=1), Number(val=1), Number(val=2), Number(val=5), Number(val=6), Number(val=7), Number(val=7), Number(val=9), Number(val=10), Number(val=10)] >>> reverse_sorted_a = sorted(a, reverse = True) #Sort Numbers in descending order >>> reverse_sorted_a >>> [Number(val=10), Number(val=10), Number(val=9), Number(val=7), Number(val=7), Number(val=6), Number(val=5), Number(val=2), Number(val=1), Number(val=1)]
dataclass
作为一个可调用的装饰器定义所有的
dunder
(LCTT 译注:这是指双下划线方法,即魔法方法)方法并不总是值得的。你的用例可能只包括存储值和检查相等性。因此,你只需定义__init__
和__eq__
方法。如果我们可以告诉装饰器不生成其他方法,那么它会减少一些开销,并且我们将在数据对象上有正确的操作。幸运的是,这可以通过将
dataclass
装饰器作为可调用对象来实现。从官方文档来看,装饰器可以用作具有如下参数的可调用对象:
@dataclass(init=True, repr=True, eq=True, order=False, unsafe_hash=False, frozen=False) class C: …
init
:默认将生成__init__
方法。如果传入False
,那么该类将不会有__init__
方法。repr
:__repr__
方法默认生成。如果传入False
,那么该类将不会有__repr__
方法。eq
:默认将生成__eq__
方法。如果传入False
,那么__eq__
方法将不会被dataclass
添加,但默认为object.__eq__
。order
:默认将生成__gt__
、__ge__
、__lt__
、__le__
方法。如果传入False
,则省略它们。__init__
__eq__
我们在接下来会讨论 frozen
。由于 unsafe_hash
参数复杂的用例,它值得单独发布一篇文章。
现在回到我们的用例,以下是我们需要的:
默认会生成这些函数,因此我们需要的是不生成其他函数。那么我们该怎么做呢?很简单,只需将相关参数作为 false 传入给生成器即可。