mysql 超大数据/表管理技巧

2023年 4月 22日 62.5k 0

如果你对长篇大论没有兴趣,也可以直接看看结果,或许你对结果感兴趣。在实际应用中经过存储、优化可以做到在超过9千万数据中的查询响应速度控制在1到20毫秒。看上去是个不错的

如果你对长篇大论没有兴趣,也可以直接看看结果,或许你对结果感兴趣。在实际应用中经过存储、优化可以做到在超过9千万数据中的查询响应速度控制在1到20毫秒。看上去是个不错的成绩,不过优化这条路没有终点,当我们的系统有超过几百人、上千人同时使用时,仍然会显的力不从心。

目录:

    分区存储    优化查询    改进分区    模糊搜索    持续改进的方案

正文:

    分区存储    对于超大的数据来说,分区存储是一个不错的选择,或者说这是一个必选项。对于本例来说,数据记录来源不同,首先可以根据来源来划分这些数据。但是仅仅这样还不够,因为每个来源的分区的数据都可能超过千万。这对数据的存储和查询还是太大了。MySQL5.x以后已经比较好的支持了数据分区以及子分区。因此数据就采用分区+子分区来存储。

    下面是基本的数据结构定义:

复制代码 代码如下:        CREATE TABLE `tmp_sampledata` (        `id` bigint(20) unsigned NOT NULL AUTO_INCREMENT,        `username` varchar(32) DEFAULT NULL,        `passwd` varchar(32) DEFAULT NULL,        `email` varchar(64) DEFAULT NULL,        `nickname` varchar(32) DEFAULT NULL,        `siteid` varchar(32) DEFAULT NULL,        `src` smallint(6) NOT NULL DEFAULT '0′,        PRIMARY KEY (`id`,`src`)        ) ENGINE=MyISAM AUTO_INCREMENT=95660181 DEFAULT CHARSET=gbk        /*!50500 PARTITION BY LIST COLUMNS(src)        SUBPARTITION BY HASH (id)        SUBPARTITIONS 5        (PARTITION pose VALUES IN (1) ENGINE = MyISAM,        PARTITION p2736 VALUES IN (2) ENGINE = MyISAM,        PARTITION p736736 VALUES IN (3) ENGINE = MyISAM,        PARTITION p3838648 VALUES IN (4) ENGINE = MyISAM,        PARTITION p842692 VALUES IN (5) ENGINE = MyISAM,        PARTITION p7575 VALUES IN (6) ENGINE = MyISAM,        PARTITION p386386 VALUES IN (7) ENGINE = MyISAM,        PARTITION p62678 VALUES IN (8) ENGINE = MyISAM) */

    对于拥有分区及子分区的数据表,分区条件(包括子分区条件)中使用的数据列,都应该定义在primary key 或者 unique key中。详细的分区定义格式,可以参考MySQL的文档。上面的结构是第一稿的存储方式(后文还将进行修改)。采用load data infile的方式加载,用时30分钟加载8千万记录。感觉还是挺快的(bulk_insert_buffer_size=8m)。    基本查询优化    数据装载完毕后,我们测试了一个查询:

复制代码 代码如下:        mysql> explain select * from tmp_sampledata where id=9562468\G        *************************** 1. row ***************************        id: 1        select_type: SIMPLE        table: tmp_sampledata        type: ref        possible_keys: PRIMARY        key: PRIMARY        key_len: 8        ref: const        rows: 8        Extra:        1 row in set (0.00 sec)

    这是毋庸置疑的,通过id进行查询是使用了主键,查询速度会很快。但是这样的做法几乎没有意义。因为对于终端用户来说,不可能知晓任何的资料的id的。假如需要按照username来进行查询的话:

复制代码 代码如下:        mysql> explain select * from tmp_sampledata where username = ‘yourusername'\G        *************************** 1. row ***************************        id: 1        select_type: SIMPLE        table: tmp_sampledata        type: ALL        possible_keys: NULL        key: NULL        key_len: NULL        ref: NULL        rows: 74352359        Extra: Using where        1 row in set (0.00 sec)

        mysql> explain select * from tmp_sampledata where src between 1 and 7 and username = ‘yourusername'\G        *************************** 1. row ***************************        id: 1        select_type: SIMPLE        table: tmp_sampledata        type: ALL        possible_keys: NULL        key: NULL        key_len: NULL        ref: NULL        rows: 74352359        Extra: Using where        1 row in set (0.00 sec)

    那这个查询就没法用了。根本就没人能等待一个上亿表的全表搜索!这是我们就考虑是否给username创建一个索引,这样肯定会提高查询速度:

        create index idx_username on tmp_sampledata(username);

    这个创建索引的时间很久,似乎超过了数据装载时间,不过好歹建好了。

复制代码 代码如下:        mysql> explain select * from tmp_sampledata2 where username = ‘yourusername'\G        *************************** 1. row ***************************        id: 1        select_type: SIMPLE        table: tmp_sampledata2        type: ref        possible_keys: idx_username        key: idx_username        key_len: 66        ref: const        rows: 80        Extra: Using where        1 row in set (0.00 sec)

    和预期的一样,这个查询使用了索引,查询速度在可接受范围内。    但是这带来了另外一个问题:创建索引需要而外的空间!!当我们对username和email都创建索引时,空间的使用大幅度的提升!这同样不是我们期望看到的(无奈的选择?)。

    除了使用索引,并保证其在查询中能使用到此索引外,分区的关键字段是一个很重要的优化因素,比如下面的这个例子:

复制代码 代码如下:        mysql> explain select id from tsampledata where username='abcdef'\G        *************************** 1. row ***************************        id: 1        select_type: SIMPLE        table: tsampledata        type: ref        possible_keys: idx_sampledata_username        key: idx_sampledata_username        key_len: 66        ref: const        rows: 80        Extra: Using where        1 row in set (0.00 sec)

        mysql> explain select id from tsampledata where username='abcdef' and src in (2,3,4,5)\G        *************************** 1. row ***************************        id: 1        select_type: SIMPLE        table: tsampledata        type: ref        possible_keys: idx_sampledata_username        key: idx_sampledata_username        key_len: 66        ref: const        rows: 40        Extra: Using where        1 row in set (0.01 sec)

        mysql> explain select id from tsampledata where username='abcdef' and src in (2)\G        *************************** 1. row ***************************        id: 1        select_type: SIMPLE        table: tsampledata        type: ref        possible_keys: idx_sampledata_username        key: idx_sampledata_username        key_len: 66        ref: const        rows: 10        Extra: Using where        1 row in set (0.00 sec)

        mysql> explain select id from tsampledata where username='abcdef' and src in (2,3)\G        *************************** 1. row ***************************        id: 1        select_type: SIMPLE        table: tsampledata        type: ref        possible_keys: idx_sampledata_username        key: idx_sampledata_username        key_len: 66        ref: const        rows: 20        Extra: Using where        1 row in set (0.00 sec)

    同一个查询语句在根据是否针对分区限定做查询时,查询成本相差很大:

        where username='abcdef'                                                    rows: 80        where username='abcdef' and src in (2,3,4,5)            rows: 40        where username='abcdef' and src in (2)                        rows: 10        where username='abcdef' and src in (2,3)                    rows: 20

    从分析中看出,当根据src(分区表的分区字段)进行查询限定时,被影响的数目(rows)在发生着变化。rows:80代表着需要对8个分区进行搜索。    改进数据存储:另一种分区格式    既然在统计应用中,最多用的是通过username, email进行数据查询,那么在表存储时,应该考虑使用username,email进行分区,而不是通过id。因此重新创建分区表,导入数据:

复制代码 代码如下:        CREATE TABLE `tmp_sampledata` (        `id` bigint(20) unsigned NOT NULL,        `username` varchar(32) NOT NULL DEFAULT ”,        `passwd` varchar(32) DEFAULT NULL,        `email` varchar(64) NOT NULL DEFAULT ”,        `nickname` varchar(32) DEFAULT NULL,        `siteid` varchar(32) DEFAULT NULL,        `src` smallint(6) NOT NULL DEFAULT '0′,        primary KEY (`src`,`username`,`email`, `id`)        ) ENGINE=MyISAM DEFAULT CHARSET=gbk        PARTITION BY LIST COLUMNS(src)        SUBPARTITION BY KEY (username,email)        SUBPARTITIONS 10        (PARTITION pose VALUES IN (1) ENGINE = MyISAM,        PARTITION p2736 VALUES IN (2) ENGINE = MyISAM,        PARTITION p736736 VALUES IN (3) ENGINE = MyISAM,        PARTITION p3838648 VALUES IN (4) ENGINE = MyISAM,        PARTITION p842692 VALUES IN (5) ENGINE = MyISAM,        PARTITION p7575 VALUES IN (6) ENGINE = MyISAM,        PARTITION p386386 VALUES IN (7) ENGINE = MyISAM,        PARTITION p62678 VALUES IN (8) ENGINE = MyISAM)?;

    这个定义没什么问题,按照预期,它将根据primary key来进行数据表分区。但是这有一个非常非常严重的性能问题:数据在load data infile的时候,同时对数据进行索引创建。这大大延长了数据装载时间,同样是不可忍受的情况。上面这个例子,如果建表时启用了 primary key 或者 unique key, 在我的测试系统上,load data infile执行了超过12小时。而下面这个:

复制代码 代码如下:        CREATE TABLE `tmp_sampledata` (        `id` bigint(20) unsigned NOT NULL,        `username` varchar(32) NOT NULL DEFAULT ”,        `passwd` varchar(32) DEFAULT NULL,        `email` varchar(64) NOT NULL DEFAULT ”,        `nickname` varchar(32) DEFAULT NULL,        `siteid` varchar(32) DEFAULT NULL,        `src` smallint(6) NOT NULL DEFAULT '0′        ) ENGINE=MyISAM DEFAULT CHARSET=gbk        PARTITION BY LIST COLUMNS(src)        SUBPARTITION BY KEY (username,email)        SUBPARTITIONS 10        (PARTITION pose VALUES IN (1) ENGINE = MyISAM,        PARTITION p2736 VALUES IN (2) ENGINE = MyISAM,        PARTITION p736736 VALUES IN (3) ENGINE = MyISAM,        PARTITION p3838648 VALUES IN (4) ENGINE = MyISAM,        PARTITION p842692 VALUES IN (5) ENGINE = MyISAM,        PARTITION p7575 VALUES IN (6) ENGINE = MyISAM,        PARTITION p386386 VALUES IN (7) ENGINE = MyISAM,        PARTITION p62678 VALUES IN (8) ENGINE = MyISAM)?;    数据装载仅仅用了5分钟:    mysql> load data infile ‘cvsfile.txt' into table tmp_sampledata fields terminated by ‘\t' escaped by ”;    Query OK, 74352359 rows affected, 65535 warnings (5 min 23.67 sec)    Records: 74352359 Deleted: 0 Skipped: 0 Warnings: 51267046

    So,所有的问题,又回到了2.上    测试查询中的模糊搜索    对于创建好索引的大数据表,一般般的针对性的查询,应该可以满足需要。但是有些查询可能不能通过索引来发挥效率,比如查询以 163.com 结尾的邮箱:

        select … from … where email like ‘%163.com'

    即便数据针对 email 建立有索引,上面的查询是用不到那个索引的。如果我们使用的是 oracle,那么还可以建立一个反向索引,但是mysql不支持反向索引。所以如果发生类似的查询,只有两种方案可以:        通过数据冗余,把需要的字段反转一遍另外保存,并创建一个索引        这样上面的那个查询可以通过 where email like ‘moc.361%' 来完成,但是这个成本(存储、更新)太高昂了        通过全文检索fulltext来实现。不过mysql同样在分区表上不支持fulltext(或许等待以后的版本吧。)        自己做分词fulltext    没有最终方案

            创建一个不含任何索引、键的分区表;            导入数据;            创建索引;

    因为创建索引要花很久时间,此处做了个小小调整,提高myisam索引的排序空间为1G(默认是8m):

        mysql> set myisam_sort_buffer_size=1048576000;        Query OK, 0 rows affected (0.00 sec)

        mysql> create index idx_username_src on tmp_sampledata (username,src);        Query OK, 74352359 rows affected (7 min 13.11 sec)        Records: 74352359 Duplicates: 0 Warnings: 0

        mysql> create index idx_email_src on tmp_sampledata (email,src);        Query OK, 74352359 rows affected (10 min 48.30 sec)        Records: 74352359 Duplicates: 0 Warnings: 0

        mysql> create index idx_src_username_email on tmp_sampledata(src,username,email);        Query OK, 74352359 rows affected (16 min 5.35 sec)        Records: 74352359 Duplicates: 0 Warnings: 0

    实际应用中,此表可能不需要这么多索引的,都建立一遍,只是为了展示一下创建的速度而已。    实际应用中的效果    存储的问题暂时解决到这里了,接下来经过了一系列的服务器参数调整以及查询的优化,我只能做到在这个超过9千万数据中的查询响应速度控制在1到20毫秒。听上去是个不错的成绩。但是当我们的系统有超过几百个人同时使用时,仍然显的力不从心。或许日后还有机会能更优化这个存储与查询。让我慢慢期待吧。

相关文章

Oracle如何使用授予和撤销权限的语法和示例
Awesome Project: 探索 MatrixOrigin 云原生分布式数据库
下载丨66页PDF,云和恩墨技术通讯(2024年7月刊)
社区版oceanbase安装
Oracle 导出CSV工具-sqluldr2
ETL数据集成丨快速将MySQL数据迁移至Doris数据库

发布评论