大数据之Greenplum介绍

2023年 8月 12日 36.6k 0

一、Greenplum的发展历史Greenplum的发展可以分为下面6个阶段:

图 1 Greenplum时间线Postgres关系型数据库。Postgres是UC Berkeley开发的关系型数据库,现已更名为PostgreSQL。PostgerSQL官网介绍自己是-先进的数据库,有强大的SQL支持能力,扩展性好,并且支持空间扩展。通过空间数据引擎PostGIS的支持可以存储和操作空间数据。SQL queries on Big Data。Greenplum初步成型,由于数据越存越多,如何在大量数据中继续使用SQL来进行查询成了一个需要解决的问题。Greenplum开发者在X86架构和Postgres数据库的基础上,结合Postgres社区和应用生态使用MPP架构将Postgres实例组织起来,并通过MPP后端来实现存储和查询。Pivotal商业公司。Emc2公司将Greenplum与分布式缓存GemFile一起结合形成了一款专注于OLAP系统的数据引擎产品,并以这个产品为核心组建了新的公司Pivotal。收购MoreVRP。初的Greenplum希望对每一次query操作都能做到尽可能的快,这样使得所有的资源都被一次query占用。然而当并发多的时候,会造成query效果变差。因此Greenplum初将query按类型划分到了不同的队列,然后按优先级给队列分配资源,进而解决了这个问题。但是因为query是在不断变动的,这时候这种策略也需要不断调整,因此Pivotal收购了一家专注于动态配置数据库的公司MoreVRP。发布HAWQ。由于市场上越来越多的客户将数据存放在HDFS上,基于Hadoop的Hive和Impala带给了Greenplum也受到了很大的冲击。Pivotal因此推出了一个处理HDFS上数据的解决方案HAWQ,但是HAWQ在HDFS上使用的是Greenplum专利格式来存储数据,其他的软件不能对这个格式进行操作,并不方便。开源Greenplum。2015年,Pivotal公司拥抱了开源社区,将Greenplum开源。

二、Greenplum的几个关键词1、shared-nothingShared Everthting:一般是针对单个主机,完全透明共享CPU/MEMORY/IO,并行处理能力差,典型的代表SQLServer。 shared-everything架构优点很明显,但是网络,硬盘很容易就会成为系统瓶颈。Shared Disk:各个处理单元使用自己的私有 CPU和Memory,共享磁盘系统。典型的代表Oracle Rac, 它是数据共享,可通过增加节点来提高并行处理的能力,扩展能力较好。其类似于SMP(对称多处理)模式,但是当存储器接口达到饱和的时候,增加节点并不能获得更高的性能 。Shared Nothing:各个处理单元都有自己私有的CPU/内存/硬盘等,不存在共享资源,各处理单元之间通过协议通信,并行处理和扩展能力更好。各节点相互独立,各自处理自己的数据,处理后的结果可能向上层汇总或在节点间流转。Share-Nothing架构在扩展性和成本上都具有明显优势。2、MPPGreenplum的架构采用了MPP(大规模并行处理)。在 MPP 系统中,每个 SMP节点也可以运行自己的操作系统、数据库等。换言之,每个节点内的 CPU 不能访问另一个节点的内存。节点之间的信息交互是通过节点互联网络实现的,这个过程一般称为数据重分配(Data Redistribution) 。与传统的SMP架构明显不同,通常情况下,MPP系统因为要在不同处理单元之间传送信息,所以它的效率要比SMP要差一点,但是这也不是的,因为 MPP系统不共享资源,因此对它而言,资源比SMP要多,当需要处理的事务达到一定规模时,MPP的效率要比SMP好。这就是看通信时间占用计算时间的比例而定,如果通信时间比较多,那MPP系统就不占优势了,相反,如果通信时间比较少,那MPP系统可以充分发挥资源的优势,达到高效率。3、MVCC与事务型数据库系统通过锁机制来控制并发访问的机制不同, GPDB使用多版本控制(Multiversion Concurrency Control/MVCC)保证数据一致性。 这意味着在查询数据库时,每个事务看到的只是数据的快照,其确保当前的事务不会看到其他事务在相同记录上的修改。据此为数据库的每个事务提供事务隔离。MVCC以避免给数据库事务显式锁定的方式,大化减少锁争用以确保多用户环境下的性能。在并发控制方面,使用MVCC而不是使用锁机制的大优势是, MVCC对查询(读)的锁与写的锁不存在冲突,并且读与写之间从不互相阻塞。三、Greenplum架构Greenplum主要由Master节点、Segment节点、interconnect三大部分组成。Greenplum master是Greenplum数据库系统的入口,接受客户端连接及提交的SQL语句,将工作负载分发给其它数据库实例(segment实例),由它们存储和处理数据。Greenplum interconnect负责不同PostgreSQL实例之间的通信。Greenplum segment是独立的PostgreSQL数据库,每个segment存储一部分数据。大部分查询处理都由segment完成。Master节点不存放任何用户数据,只是对客户端进行访问控制和存储表分布逻辑的元数据Segment节点负责数据的存储,可以对分布键进行优化以充分利用Segment节点的io性能来扩展整集群的io性能存储方式可以根据数据热度或者访问模式的不同而使用不同的存储方式。一张表的不同数据可以使用不同的物理存储方式:行存储、列存储、外部表3.1 大规模数据存储(1)Greenplum数据库通过将数据分布到多个节点上来实现规模数据的存储。数据库的瓶颈经常发生在I/O方面,数据库的诸多性能问题终总能归罪到I/O身上,久而久之,IO瓶颈成为了数据库性能的永恒的话题。(2)Greenplum采用分而治之的办法,将数据规律的分布到节点上,充分利用Segment主机的IO能力,以此让系统达到大的IO能力(主要是带宽)。(3)在Greenplum中每个表都是分布在所有节点上的。Master节点首先通过对表的某个或多个列进行hash运算,然后根据hash结果将表的数据分布到Segment节点中。整个过程中Master节点不存放任何用户数据,只是对客户端进行访问控制和存储表分布逻辑的元数据。

图 2 Greenplum存储结构Greenplum提供称为“多态存储”的灵活存储方式。多态存储可以根据数据热度或者访问模式的不同而使用不同的存储方式。一张表的不同数据可以使用不同的物理存储方式。支持的存储方式包含:行存储:行存储是传统数据库常用的存储方式,特点是访问比较快,多列更新比较容易。列存储:列存储按列保存,不同列的数据存储在不同的地方(通常是不同文件中)。适合一次只访问宽表中某几个字段的情况。列存储的另外一个优势是压缩比高。外部表:数据保存在其他系统中例如HDFS,数据库只保留元数据信息。

3.2 并行查询计划和执行下图为一个简单SQL语句,从两张表中找到2008年的销售数据。图中右边是这个SQL的查询计划。从生成的查询计划树中看到有三种不同的颜色,颜色相同表示做同一件事情,我们称之为分片/切片(Slice)。下层的橙色切片中有一个重分发节点,这个节点将本节点的数据重新分发到其他节点上。中间绿色切片表示分布式数据关联(HashJoin)。上面切片负责将各个数据节点收到的数据进行汇总。

然后看看这个查询计划的执行。主节点(Master)上的调度器(QD)会下发查询任务到每个数据节点,数据节点收到任务后(查询计划树),创建工作进程(QE)执行任务。如果需要跨节点数据交换(例如上面的HashJoin),则数据节点上会创建多个工作进程协调执行任务。不同节点上执行同一任务(查询计划中的切片)的进程组成一个团伙(Gang)。数据从下往上流动,终Master返回给客户端。3.3 并行数据加载(1)并行加载技术充分利用分布式计算和分布式存储的优势,保证发挥出每一块Disk的I/O资源(2)并行加载比串行加载,速度提高40-50倍以上,减少ETL窗口时间(3)增加Segment和ETL Server,并行加载速度呈线性增长

四、Greenplum优势数据存储当今是个数据不断膨胀的时代,采取MPP架构的数据库系统可以对海量数据进行管理。Greenplum支持50PB(1PB=1024TB)级海量数据的存储和处理,Greenplum将来自不同源系统的、不同部门、不同平台的数据集成到数据库中集中存放,并且存放详尽历史的数据轨迹,业务用户不用再面对一个又一个信息孤岛,也不再困惑于不同版本数据导致的偏差,同时对于IT人员也降低管理维护工作的复杂度。高并发随着商业智能在企业内的快速发展,BI 用户对信息分析平台的访问频率和查询复杂度也快速提升,因此要求相应的数据库系统对高并发查询进行支持。Greenplum利用强大并行处理能力提供并发支持。Greenplum提供资源管理功能(workload managemnt)来管理数据库资源,利用资源队列管理可实现按用户组的进行资源分配,如Session同时激活数、大资源值等。通过资源管理功能,可以按用户级别进行资源分配和管理用户SQL查询优先级别,同时也能防止低质量SQL(如没有条件的多表join等)对系统资源的消耗。线性扩展Greenplum与其他分布式大数据产品如Yonghong Z-DataMart一样采用了通用的MPP并行处理架构,在MPP架构中增加节点就可以线性提高系统的存储容量和处理能力。Greenplum在扩展节点时操作简单,在很短时间内就能完成数据的重新分布。Greenplum线性扩展支持为数据分析系统将来的拓展给予了技术上的保障,用户可根据实施需要进行容量和性能的扩展。高性价比Greenplum数据库软件系统节点基于业界各种开放式硬件平台,如SUN/HP/DELL等厂商的PC Server等,在普通的x86 Server上就能达到很高的性能,因此性价比很高,相比于其他封闭式数据仓库专用系统,Greenplum每TB的投资是前者的1/5甚至更低。同样,Greenplum产品的维护成本相比同类厂商也低许多。反应速度我们面对的是一个瞬息变化的市场,谁能首先感知到市场的需求和变化,就能在竞争中先行一步,获得主动权,在竞争中立于不败之地。Greenplum通过准实时、实时的数据加载方式,实现数据仓库的实时更新,进而实现动态数据仓库(ADW)。基于动态数据仓库,业务用户能对当前业务数据进行BI实时分析-“Just In Time BI”,能够让企业敏锐感知市场的变化,加快决策支持反应速度。高可用性Greenplum是高可用的系统,在已有案例中多使用了96台机器的集群MPP环境。除了硬件级的Raid技术外,Greenplum还提供数据库层Mirror机制保护,即每个节点数据在另外的节点中同步镜像,单个节点的错误不影响整个系统的使用。对于主节点,Greenplum提供Master/Stand by机制进行主节点容错,当主节点发生错误时,可以切换到Stand by节点继续服务。系统易用Greenplum产品是基于流行的PostgreSQL之上开发,几乎所有的PostgreSQL客户端工具及PostgreSQL应用都能运行在Greenplum平台上,在Internet上有着丰富的PostgreSQL资源供用户参考。

本文来源:https://blog.csdn.net/iOceanMind/article/details/118099735

相关文章

Oracle如何使用授予和撤销权限的语法和示例
Awesome Project: 探索 MatrixOrigin 云原生分布式数据库
下载丨66页PDF,云和恩墨技术通讯(2024年7月刊)
社区版oceanbase安装
Oracle 导出CSV工具-sqluldr2
ETL数据集成丨快速将MySQL数据迁移至Doris数据库

发布评论