图解B树及C#实现(3)数据的删除

2023年 10月 2日 29.9k 0

前言

本文为系列文章

  • B树的定义及数据的插入
  • 数据的读取及遍历
  • 数据的删除(本文)
  • 阅读本文前,建议先复习前两篇文章,以便更好的理解本文。

    从删除的数据所在的节点可分为两种情况:

  • 从叶子节点删除数据
  • 从非叶子节点删除数据
  • 无论从叶子节点还是非叶子节点删除数据时都需要保证B树的特性:非根节点每个节点的 key 数量都在 [t-1, 2t-1] 之间。

    借此保证B树的平衡性。

    之前介绍的插入数据关注的是这个范围的上限 2t-1,插入时,如果节点的 key 数量大于 2t-1,就需要进行数据的分裂。

    而删除数据则关注是下限 t-1,如果节点的 key 数量小于 t-1,就需要进行数据的移动或者合并。

    删除数据时,需要考虑的情况比较多,本文会分别讨论这些情况,但一些比较边缘的情况为避免描述过于复杂,不再文中讨论,而是在代码中进行了注释。

    因为删除逻辑比较复杂,请结合完整代码进行阅读。
    github.com/eventhorizo…

    从叶子节点删除数据

    如果待删除的数据在叶子节点,且该节点的 Item 数量大于 t-1,那么直接删除该数据即可。

    从非叶子节点删除数据

    如果待删除的数据在非叶子节点,那么需要先找到该数据的左子节点,然后将左子节点的数据替换到待删除的数据,最后再删除左子节点的数据。

    这样能保证被删除数据的节点的 Item 数量不变,保证 B树 有 k 个子节点的非叶子节点拥有 k − 1 个键的特性不受破坏。

    提前扩充只有 t-1 的 Item 的节点:维持 B树 平衡的核心算法

    在数据插入的时候,为了避免回溯性的节点分裂,我们提前将已满的子节点进行分裂。

    同样的在数据删除,不断往下递归查找时,如果遇到只有 t-1 个 Item 的节点,我们也需要提前将其扩充,以避免回溯性的节点处理。

    扩充的节点不一定是最后数据所在的节点,只是向下查找过程中遇到的节点。

    节点扩充的分为两类,一个是从兄弟节点借用 Item,一个是合并兄弟节点,被借用的兄弟节点需要满足 Item 数量大于 t-1。具体可分为以下三种情况:

    从左兄弟节点借用 Item

    待扩充节点的左兄弟节点存在且左兄弟节点的 Item 数量 > t-1 时,从左兄弟节点借用 Item 进行扩充。

    为了保证 B树 数据的顺序特性:任意 Item 的左子树中的 Key 均小于该 Item 的 Key,右子树中的 Key 均大于该 Item 的 Key。需要交换左兄弟节点的最右边的 Item 和父节点中对应位置的 Item(位于左兄弟节点右侧)。

    以下图为例进行说明:

    从右兄弟节点借用 Item

    待扩充节点的左兄弟节点不存在或者左兄弟节点的 Item 数量 只有 t-1 时,无法外借。但右兄弟节点存在且右兄弟节点的 Item 数量 > t-1 时,从右兄弟节点借用 Item 进行扩充。

    以下图为例进行说明:

    从兄弟节点进行扩充可以概括为:借用,交换,插入。

    与左兄弟节点或者右兄弟节点合并

    如果待扩充节点的左兄弟节点和右兄弟节点都不存在或者都只有 t-1 个 Item 时,无法外借。此时需要与左兄弟节点或者右兄弟节点进行合并。

    以下图为例进行说明:

    最值的删除

    之前章节介绍过 B树 最值的查找:

  • 最小值:从根节点开始,一直往左子树走,直到叶子节点。
  • 最大值:从根节点开始,一直往右子树走,直到叶子节点。
  • 最值的删除就是先找到最值的位置并将其删除,在向下寻找的过程中,需要和普通的数据删除一样,对节点进行扩充或者合并。

    代码实现

    最值删除是删除的特殊情况,我们定义一个枚举用来区分普通数据的删除,最小值的删除以及最大值的删除,这三种方式只在数据查找的时候有所区分,其他的逻辑都是一样的。

    internal enum RemoveType
    {
        Item,
        Min,
        Max
    }
    
    public sealed class BTree : IEnumerable
    {
        public bool TryRemove([NotNull] TKey key, out TValue? value)
        {
            ArgumentNullException.ThrowIfNull(key);
    
            return TryRemove(key, RemoveType.Item, out value);
        }
    
        public bool TryRemoveMax(out TValue? value) => TryRemove(default, RemoveType.Max, out value);
    
        public bool TryRemoveMin(out TValue? value) => TryRemove(default, RemoveType.Min, out value);
    
            private bool TryRemove(TKey? key, RemoveType removeType, out TValue? value)
        {
            if (_root == null || _root.IsItemsEmpty)
            {
                value = default;
                return false;
            }
    
            bool removed = _root.TryRemove(key, removeType, out var item);
            if (_root.IsItemsEmpty && !_root.IsLeaf)
            {
                // 根节点原来的两个子节点进行了合并,根节点唯一的元素被移动到了子节点中,需要将合并后的子节点设置为新的根节点
                _root = _root.GetChild(0);
            }
    
            if (removed)
            {
                _count--;
                value = item!.Value;
                return true;
            }
    
            value = default;
            return removed;
        }
    }
    

    主要的逻辑定义在 Node 中,不断向下递归

    internal class Node
    {
            public bool TryRemove(TKey? key, RemoveType removeType, [MaybeNullWhen(false)] out Item item)
        {
            int index = 0;
            bool found = false;
            if (removeType == RemoveType.Max)
            {
                if (IsLeaf)
                {
                    if (_items.Count == 0)
                    {
                        item = default;
                        return false;
                    }
    
                    // 如果是叶子节点,直接删除最后一个元素,就是删除最大的 Item
                    item = _items.RemoveLast();
                    return true;
                }
    
                // 当前节点不是叶子节点,需要找到最大的子节点,继续向下查找并删除
                index = ItemsCount;
            }
    
            if (removeType == RemoveType.Min)
            {
                if (IsLeaf)
                {
                    if (_items.Count == 0)
                    {
                        item = default;
                        return false;
                    }
    
                    // 当前节点是叶子节点,直接删除第一个元素,就是删除最小的 Item
                    item = _items.RemoveAt(0);
                    return true;
                }
    
                // 当前节点不是叶子节点,需要找到最小的子节点,继续向下查找并删除
                index = 0;
            }
    
            if (removeType == RemoveType.Item)
            {
                // 如果没有找到,index 表示的是 key 可能在的子树的索引
                found = _items.TryFindKey(key!, out index);
    
                if (IsLeaf)
                {
                    // 如果是叶子节点,能找到就删除,找不到就返回 false,表示删除失败
                    if (found)
                    {
                        item = _items.RemoveAt(index);
                        return true;
                    }
    
                    item = default;
                    return false;
                }
            }
    
            // 如果当前节点的左子节点的 Item 个数小于最小 Item 个数,就需要进行合并或者借元素
            // 这个处理对应两种情况:
            // 1. 要删除的 Item 不在当前节点的子节点中,为避免删除后导致数据所在节点的 Item 个数小于最小 Item 个数,需要先进行合并或者借元素。
            // 2. 要删除的 Item 就在当前节点中,为避免删除后导致当前节点的 Item 个数小于最小 Item 个数,需要先从左子节点中借一个 Item 过来,保证当前节点的 Item 数量不变。
            // 为此先要保证左子节点被借用后的 Item 个数不小于最小 Item 个数。
            if (_children[index].ItemsCount  0 && _children[childIndex - 1].ItemsCount > _minItems)
            {
                // 如果左边的子节点存在且左边的子节点的item数量大于最小值,则从左边的子节点借一个item
                var child = _children[childIndex];
                var leftChild = _children[childIndex - 1];
                var stolenItem = leftChild._items.RemoveLast();
                child._items.InsertAt(0, _items[childIndex - 1]);
                _items[childIndex - 1] = stolenItem;
                if (!leftChild.IsLeaf)
                {
                    // 非叶子节点的子节点需要保证数量比item多1,item数量变了,子节点数量也要变
                    // 所以需要从左边的子节点中移除最后一个子节点,然后插入到当前子节点的第一个位置
                    child._children.InsertAt(0, leftChild._children.RemoveLast());
                }
            }
            else if (childIndex  _minItems)
            {
                // 如果右边的子节点存在且右边的子节点的item数量大于最小值,则从右边的子节点借一个item
                var child = _children[childIndex];
                var rightChild = _children[childIndex + 1];
                var stolenItem = rightChild._items.RemoveAt(0);
                child._items.Add(_items[childIndex]);
                _items[childIndex] = stolenItem;
                if (!rightChild.IsLeaf)
                {
                    // 非叶子节点的子节点需要保证数量比item多1,item数量变了,子节点数量也要变
                    // 所以需要从右边的子节点中移除第一个子节点,然后插入到当前子节点的最后一个位置
                    child.AddChild(rightChild._children.RemoveAt(0));
                }
            }
            else
            {
                // 如果当前节点左右两边的子节点的item数量都不大于最小值(例如正好等于最小值 t-1 ),则合并当前节点和右边的子节点或者左边的子节点
                // 优先和右边的子节点合并,如果右边的子节点不存在,则和左边的子节点合并
                if (childIndex >= ItemsCount)
                {
                    // ItemCount 代表最的子节点的索引,如果 childIndex 大于等于 ItemCount,说明右边的子节点不存在,需要和左边的子节点合并
                    childIndex--;
                }
    
                var child = _children[childIndex];
                var mergeItem = _items.RemoveAt(childIndex);
                var mergeChild = _children.RemoveAt(childIndex + 1);
                child._items.Add(mergeItem);
                child._items.AddRange(mergeChild._items);
                child._children.AddRange(mergeChild._children);
            }
    
            return TryRemove(key, removeType, out item);
        }
    }
    

    Benchmarks:与 优先队列 PriorityQueue 的比较

    我们实现的 BTree 支持自定义排序规则,也实现最值的删除,意味着可以充当优先队列使用。

    我们使用 PriorityQueue 与 BTree 进行性能对比来看看 B树 能否充当优先队列使用。

    入队性能

    public class BTree_PriorityQueue_EnequeueBenchmarks
    {
        [Params(1000, 1_0000, 10_0000)] public int DataSize;
    
        [Params(2, 4, 8, 16)] public int Degree;
    
        private HashSet _data;
    
        [IterationSetup]
        public void Setup()
        {
            var random = new Random();
            _data = new HashSet();
            while (_data.Count < DataSize)
            {
                var value = random.Next();
                _data.Add(value);
            }
        }
    
        [Benchmark]
        public void BTree_Add()
        {
            var btree = new BTree(Degree);
    
            foreach (var value in _data)
            {
                btree.Add(value, value);
            }
        }
    
        [Benchmark]
        public void PriorityQueue_Enqueue()
        {
            var priorityQueue = new PriorityQueue(DataSize);
    
            foreach (var value in _data)
            {
                priorityQueue.Enqueue(value, value);
            }
        }
    }
    

    出队性能

    public class BTree_PriorityQueue_DequeueBenchmarks
    {
        [Params(1000, 1_0000, 10_0000)] public int DataSize;
    
        [Params(2, 4, 8, 16)] public int Degree;
    
        private BTree _btree;
    
        private PriorityQueue _priorityQueue;
    
        [IterationSetup]
        public void Setup()
        {
            var random = new Random();
            _btree = new BTree(Degree);
            _priorityQueue = new PriorityQueue(DataSize);
    
            while (_btree.Count  0)
            {
                _btree.RemoveMin();
            }
        }
    
        [Benchmark]
        public void PriorityQueue_Dequeue()
        {
            while (_priorityQueue.Count > 0)
            {
                _priorityQueue.Dequeue();
            }
        }
    }
    

    可以看到,B树 虽然在入队性能上比 PriorityQueue 差。但在数据量和 degree 较大时,出队性能比 PriorityQueue 好,是有能力充当优先队列使用的。

    总结

    B树 在 degree 较大时,树的高度较低,删除的效率较高,可充当优先队列使用。

    B树 的插入,删除,查找都是基于递归的,递归的深度为树的高度。

    B树 对数据的查找基于二分查找,时间复杂度为 O(log n),B树 的插入和删除基于 B树的查找算法,都要找到数据所在的节点,然后在该节点进行插入和删除。因此,B树 的插入和删除的时间复杂度也为 O(log n)。

    B树 是对二叉树的一种优化,使得树的高度更低,但是在插入,删除的过程中,需要进行大量的节点分裂,合并,借用,交换等操作,使得算法的复杂度更高。

    参考资料

    Google 用 Go 实现的内存版 B树 github.com/google/btre…

    B树 维基百科 zh.m.wikipedia.org/zh-hans/B%E…

    相关文章

    JavaScript2024新功能:Object.groupBy、正则表达式v标志
    PHP trim 函数对多字节字符的使用和限制
    新函数 json_validate() 、randomizer 类扩展…20 个PHP 8.3 新特性全面解析
    使用HTMX为WordPress增效:如何在不使用复杂框架的情况下增强平台功能
    为React 19做准备:WordPress 6.6用户指南
    如何删除WordPress中的所有评论

    发布评论